x^4-10x^2+9=0 решите уравнение
Ищем корни x4 - 10x2 + 9 = 0 биквадратного уравнения. Для этого мы начнем с введения замены переменной.
Итак, пусть x2 = t и тогда мы получим уравнение:
t2 - 10t + 9 = 0;
Решаем полученное квадратное уравнение:
D = b2 - 4ac = (-10)2 - 4 * 1 * 9 = 100 - 36 = 64;
Переходим к нахождению корней уравнения по формулам:
t1 = (-b + √D)/2a = (10 + √64)/2 * 1 = (10 + 8)/2 = 18/2 = 9;
t2 = (-b - √D)/2a = (10 - √64)/2 * 1 = (10 - 8)/2 = 2/2 = 1.
Вернемся к замене:
1) x2 = 9;
x = 3; x = -3.
2) x2 = 1;
x = 1; x = -1.
Замена: 3x²-x=t.
(t-3)t+2=0
t²-3t+2=0
Решая по теореме Виета, находим корни t₁=1; t₂=2.
1) t=1
3x²-x-1=0
D=1+12=13
Т.к. ищем БОЛЬШИЙ корень, x=(1+√13)/6
2) t=2
3x²-x-2=0
D=1+24=25
Аналогично, x=(1+5)/6=1.
Теперь нужно выяснить, какой из полученных корней больше. Рассмотрим разность
(1+√13)/6-1=(√13-5)/6=(√13-√25)/6. Так как разность отрицательна, то корень x=1 больше.
ответ: 1.
Замечание. Сказать, какой из корней двух уравнений ax^2+bx+c=0 или ax^2+bx+C=0 (c<C) больше, можно и не решая уравнения. В самом деле, если представлять себе параболы, то легко догадаться, что при a>0 больше корень первого уравнения, а при a<0 - второго (при условии, что корни уравнений вещественные).
Это и есть ответы.