Объяснение:1)проведи лучи через т.о, АО,ВО,СО и на продолжении лучей за т.О
отложи отрезки ОА1=ОА,ОВ1=ОВ,ОС1=ОС , построй теперь ΔА1В1С1 он и будет симметричен ΔАВС относительно Т.О .
2)здесь сложнее,надо использовать прямоугольный треугольник.Через т.А,В,С ПРОВЕДЕМ прямые перпендикулярные прямой l и пересекающие ее в т.А0,В0,С0 и от т.пересечения с прямой отложим отрезки А1А0=АА0,В1В0=ВВ0,
С1С0=СС0,соеднив т.А1,В1,С1 получим искомый ΔА1В1С1.
(К СОЖАЛЕНИЮ,не могу нарисовать картинку,но все тебе надо делать сам-но)
В решении.
Объяснение:
Решить квадратное уравнение используя теорему Виета и разложить по формуле квадратного трёхчлена.
Решить:
11) х² - 5х + 6 = 0
По теореме Виета:
х₁ + х₂ = 5;
х₁ * х₂ = 6;
х₁ = 3; х₂ = 2.
12) х² + 5х + 6 = 0
По теореме Виета:
х₁ + х₂ = -5;
х₁ * х₂ = 6;
х₁ = -3; х₂ = -2.
13) х² - 8х + 12 = 0
По теореме Виета:
х₁ + х₂ = 8;
х₁ * х₂ = 12;
х₁ = 4; х₂ = 2.
14) х² - 9х + 18 = 0
По теореме Виета:
х₁ + х₂ = 9;
х₁ * х₂ = 18;
х₁ = 6; х₂ = 3.
15) х² - 7х + 10 = 0
По теореме Виета:
х₁ + х₂ = 7;
х₁ * х₂ = 10;
х₁ = 5; х₂ = 2.
Разложить:
11) х² - 5х + 6;
(х² - 2*х*2,5 + 2,5²) - 2,5² + 6 =
= (х² - 2*х*2,5 + 2,5²) - 6,25 + 6 =
= (х - 2,5)² -0,25;
12) х² + 5х + 6;
(х² + 2*х*2,5 + 2,5²) - 2,5² + 6 =
= (х² + 2*х*2,5 + 2,5²) - 6,25 + 6 =
= (х + 2,5)² - 0,25;
13) х² - 8х + 12;
(х² - 2*х*4 + 4²) - 4² + 12 =
= (х² - 2*х*4 + 4²) - 16 + 12 =
= (х - 4)² - 4;
14) х² - 9х + 18;
(х² - 2*х*4,5 + 4,5²) - 4,5² + 18 =
= (х² - 2*х*4,5 + 4,5²) - 20,25 + 18 =
= (х - 4,5)² - 2,25;
15) х² - 7х + 10;
(х² - 2*х*3,5 + 3,5²) - 3,5² + 10 =
= (х² - 2*х*3,5 + 3,5²) - 12,25 + 10 =
= (х - 3,5)² - 2,25.
4 * ( 3 + 1 ) = 4 ^ 2
4 * 4 = 4 ^ 2
4 ^ 2 = 4 ^ 2
4 * 5 + 5 = 5 ^ 2
5 * ( 4 + 1 ) = 5 ^ 2
5 * 5 = 5 ^ 2
5 ^ 2 = 5 ^ 2