почему нет?) например. 2015, 2015...2015, всего 2015 одинаковых слагаемых, каждое из которых равно 2015, если найти сумму обратных чисел, т.е.
(1/2015)+(1/2015)+(1/2015)+...(1/2015)=1
Если числа различные, первое, что приходит на ум, это взять единицу и попытаться ее представить в виде
1=1/2+1/3+1/6; получили три слагаемых, понятно, если их сложить, выйдем на единицу;
1/6=1/12+1/18+1/36, заменим 1/6 в разложении единицы, получим 1=1/2+1/3+1/12+1/18+ 1/36, получили, что слагаемых стало на два больше.т.е. пять, если опять попытаться разделить разложение единицы, разделив на 36 обе части, то получим 1/36=1/72+1/108+1/216, если заменить предыдущее разложение на
1=1/2+1/3+1/12+1/18+1/72+1/108+1/216, то уже в нем получили 7 членов, т.е. опять увеличили на два предыдущее разложение. если теперь 1/216 заменить. деля обе части первого равенства на 216, получим 1/216=1/432+1/648+1/1296, т.е. вместо одного слагаемого 1/216 появится три слагаемых,
1/432+1/648+1/1296, т.е. опять увеличили на два предыдущее разложение, т.о., у нас все время получается нечетное количество слагаемых в разложении. а число 2015 нечетное,требуемое в вашей задаче вполне возможно. т.е. можно указать такие 2015 натуральных чисел,чтобы сумма их обратных величин была равна 1. Условием задачи не предусмотрено найти все 2015, но правило, по которому это можно сделать, найдено. поэтому на досуге..)
Если P(x) делится на Q(x), то
P(x)/Q(x)=A(x) ,где A(x)-многочлен.
Поскольку Q(x) делится на P(x),то
Q(x)/P(x)=B(x) ,где B(x) -многочлен.
Откуда верно, что:
A(x)*B(x)=1
Если знаете комплексный анализ, то очевидно, что многочлен со степенью больше нуля имеет хотя бы один корень (комплексный или действительный),но тогда и произведение многочленов должно иметь этот корень,но многочлен C(x)=A(x)*B(x)=1 ,не может иметь корней тк 1 не равно 0.
А значит оба многочлена A(x) и B(x) имеют нулевую степень (константы),таким образом B(x)=c.(с не равно 0)
Q(x)=c*P(x)
Пусть многочлен A(x) имеет степень n ,а многочлен B(x) имеет степень m.Тогда очевидно, что многочлен A(x)*B(x) имеет степень m+n, но 1 это многочлен нулевой степени:
m+n=0
Тк m>=0 и n>=0, то m=n=0.
То есть B(x)=c (с не равно 0)
Q(x)=c*P(x) ,что и требовалось доказать.
400 шк360%
х шк--- 162%
х=(400·162)\360
х=180
ответ:180 школьников занимаются футболом