М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sergiu21
sergiu21
18.03.2023 09:21 •  Алгебра

Найти координаты вершины параболы у=(х-2)^2+5

👇
Ответ:
teXerStas
teXerStas
18.03.2023
Вот,кажется, можно было и попроще решить, ну я помню только так
Найти координаты вершины параболы у=(х-2)^2+5
4,6(20 оценок)
Ответ:
kolyanikolay200
kolyanikolay200
18.03.2023
У=х²-4х+4+5=х²-4х+9
х₀=-в/2а
х₀=4/2=2
у₀=2²-8+9=4-8+9=5
(2;5) координаты вершины параболы
4,6(60 оценок)
Открыть все ответы
Ответ:
maksimananchenko
maksimananchenko
18.03.2023

Воспользуемся леммой

Если m-простое число в данном случае m=37, то набор N={2,3,4,5...,35}  всегда можно разбить на пары (a,b) произведении которых, будут давать  a*b дает остаток 1 по модулю 37 (некий частный случай Теоремы Вильсона).

Преобразуем

1/2^2+2/3^2+3/4^2+...+35/36^2  = ((3*4*5*...*36)^2+2*(2*4*5*6*...*36)^2+...+35*(2*3*4*...*35)^2)/(36!)^2

По теореме Вильсона 36! = 36 по mod 37 значит докажем числитель делится на 37 (это и докажет что p делится на 37) так как q не делится на 37.

Воспользовавшись леммой, получаем что каждое слагаемое в числителе

(3*4*5*...*36)^2=(36*x1)^2 по mod 37

(2*4*5*6*...*36)^2=(36*x2)^2 по mod 37

(2*3*5*6*...*36)^2=(36*x3)^2 по mod 37  

...

(2*3*4*5*...*35)^2=1 mod 37  (Теорема Вильсона)

Отметим что x1,x2,x3.,,,.x(m-3)  чисел попарно различные, образующие очевидно множество {2,3,4,...m-2} тогда среди можно выбрать два элемента которые дадут сравнение  x^2=y^2 mod 37  потому что (x-y)(x+y)=0 mod 37 , а множество можно разбить на соответственные суммы  2+35=3+34=...=18+19

p=36^2(1*x1^2+2*x2^2+3*x3^2+4*x4^2+...+34*x(34)^2)+35  

так как 36^2=1 по mod 37  

Докажем что (1*x1^2+2*x2^2+3*x3^2+4*x4^2+...+34*x(34)^2) = 2  mod 37

Так как выше было сказано что половина остатков равные, то выражение можно записать через остатки которые будут образовывать последовательную сумму (так как набор из множества {2,3,4,...,35}  откуда

p=35*(2^2+3^2+4^2+...+17^2+18^2)  

воспользуемся формулой что 1^2+2^2+3^2+...n^2=n(n+1)(2n+1)/6

Тогда p=35*(18*19*37/6-1) = 35*3*19*37 - 35 = 0-(37-2) = 2 mod 37

То есть p=36^2*2+35 = 1*2+35 = 0 mod 37

4,5(96 оценок)
Ответ:
D202
D202
18.03.2023
Выражения связаны между собой:
q×√(2x+8)= √(3x-8)
q×√(3x-8)= 1

возведём в квадрат каждое выражение, не забывая про область определения: х>=8/3
имеем:
q^2×(2x+8)=3x-8
q^2×(3x-8)=1
из второго выразим q^2 =1/(3х-8) и подставим в 1
(2x+8)/(3x-8)=3x-8
после преобразований имеем:
2х+8=9x^2-48x+64
или 9x^2-50x+56,получив квадратное уравнение,решаем через дискриминант,по формуле D=√b^2-4ac=√50^2-4×9×56=√2500-2016=√484=22; x1=-b+√D/2a=50+√484/2×9=50+22/18=72/18=4; x2=-b-√D/2a=50-√484/2×9=50-22/18=28/18=14/9
корни 4 и 14/9, но 14/9<8/3 - не подходит, значит ответ х=4
Таким образом при x=4 геометрическая последовательность будет такой: 16;4;1
4,7(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ