1) Члены данной последовательности можно получить, прибавляя к предыдущему члену 2. Таким образом, чтобы получить следующий член последовательности, нужно к предыдущему члену прибавить 2. Следовательно, последовательность будет иметь вид: 5, 7, 9, 11, 13, ...
2) Для нахождения двенадцатого члена последовательности, заданной формулой аn=-2n+1, нам нужно подставить n = 12 в формулу:
а12 = -2*12 + 1 = -24 + 1 = -23
Таким образом, двенадцатым членом данной последовательности является -23.
4) Для ответа на данный вопрос нам нужно найти количество членов последовательности, расположенных между а3(k+2) и а3(k+6). Для этого нужно выразить эти члены следующим образом:
а3(k+2) = -2(k+2) + 1 = -2k - 3
а3(k+6) = -2(k+6) + 1 = -2k - 11
Заметим, что члены последовательности расположены через один. То есть, между а3(k+2) и а3(k+6) находятся 5 членов последовательности. Следовательно, правильный ответ: 5.
5) Для нахождения суммы первых шести членов последовательности, заданной формулой an=2n-4, нужно сложить значения от n = 1 до n = 6:
a1 = 2*1 - 4 = -2
a2 = 2*2 - 4 = 0
a3 = 2*3 - 4 = 2
a4 = 2*4 - 4 = 4
a5 = 2*5 - 4 = 6
a6 = 2*6 - 4 = 8
Сумма первых шести членов будет:
-2 + 0 + 2 + 4 + 6 + 8 = 18
6) Для нахождения пятого члена последовательности, заданной формулой аn=(n^2-2n)/3, нужно подставить n = 5 в формулу:
a5 = (5^2 - 2*5)/3 = (25 - 10)/3 = 15/3 = 5
Таким образом, пятый член данной последовательности равен 5.
10) Первый член последовательности равен 13, а каждый следующий на 5 меньше предыдущего. То есть, разность между каждыми двумя последовательными членами равна -5. Чтобы найти шестой член данной последовательности, мы можем применить формулу для нахождения общего члена аn = а1 + (n-1)d, где d - разность между последовательными членами.
а6 = 13 + (6-1)(-5) = 13 - 5*5 = 13 - 25 = -12
Таким образом, шестой член последовательности равен -12. Ответ: -12.
б) 9а - а³ = а(9 - а²) = а(3 + а)(3 - а)