Парабола и прямая пересекаются в двух точках: (-20;80) и (5;5).
Объяснение:
Парабола y = 1/5x2 и прямая y = 20 - 3x пересекаются, если эта система имеет решение.
y = 1/5x2,
y = 20 - 3x;
1/5x2 = 20 - 3x;
1/5x2 + 3x - 20 = 0 (умножим на 5);
5x2 + 15x - 100 = 0;
Легко найти корни по теореме, обратной теореме Виета (можно и по формуле корней).
x1 = -20, x2 = 5.
Тогда y1 = 20 - 3 * (-20) = 20 + 60 = 80,
y2 = 20 - 3 * 5 = 20 - 15 = 5.
Парабола и прямая пересекаются в двух точках: (-20;80) и (5;5).
(x+50)/x>=m
(x+50-mx)/x >= 0
1) {x(1-m) +50>=0 {x >= 50/(m-1) Теперь найдём значение параметра m,
{ x >= 0 { x >= 0 при котором наибольшее положительное
решение неравенства равно 10.
50/(m-1) = 10 > 50 = 10m - 10, 10m = 60, m = 6
2) {x(1-m) +50 <0 Эту систему не решаем так как здесь Х принимает только
{ x < 0 отрицательные значения.
ответ. m = 6