Составим систему: x - y = 5 x*y = 84 Выразим "х" через "у" и подставим полученное значение во второе уравнение. x = 5 + y y*(5 + y)=84 Получаем квадратное уравнение: y*y + 5*y - 84 = 0 Находим дискриминант: D= 5*5 - 4*(-84) = 25 + 336 = 361 = 19*19 Находим возможные действительные значения "у": y1 = ( - 5 + 19)/2 = 7 y2 = ( - 5 - 19)/2 = - 12 Подставляем полученные значения в первое уравнение. Потом выполняем проверку через подстановку полученного значения "х" во второе уравнение. Получаем, что искомые числа: -7 и -12, а также 12 и 7.
Порядок числа а - (-5), при умножении на 10, это число станет (-4) порядка, это дробь, у которой есть десятитысячные доли, например: 2,7*10^(-4); если прибавить число 4 порядка, то порядок суммы не изменится. В числе В есть десятки тысяч, от прибавления десятичной дроби они не изменятся. Например: числа 1,0*10^4 - число 4 порядка; 9,765*10^4 -число 4 порядка. Это стандартная запись числа. От прибавления малюсенькой дроби сумма останется 4 порядка. ответ: сумма 4 порядка. Частный случай: при В=9,99999999, а далее любые цифры, при прибавлении числа (-4) порядка, в сумме получим число 5 порядка, т.к. в ответе будет 10,0000000*10^4=1,00000000*10^5. ответ: сумма 4 порядка, но в частном случае сумма может стать 5 порядка.
ответ:
х∈{πn/4;-π/12+πn/2; π/12+πn/2}, n∈Z