Пусть х(грн) - стоит 1кг апельсинов, а у(грн) - стоит 1кг лимонов, тогда 5кг апельсинов стоят 5х(грн), а 6кг лимонов стоят 6у(грн), вместе они стоят 150грн, получаем уравнение 5х+6у=150. 4кг апельсинов стоят 4х(грн), а 3кг лимонов 3у(грн), раз 4кг апельсинов дороже на 3грн, то получим уравнение 4х-3у=3. Составим и решим систему уравнений:5х+6у=150,4х-3у=3;Решим систему сложения, умножив второе уравнение на 2, получим:5х+6у=150,8х-6у=6; 13х=156,4х-3у=3; х=12,48-3у=3; х=12,-3у=-45; х=12,у=15.12(грн)-стоит 1кг апельсинов15(грн)-стоит 1кг лимонов
D(y)=[Пn;П/4 +Пn)U(П/4 +Пn;П+Пn]
y'=2*cos2x/(1-sin2x)+sin2x*((-1)/(1-sin2x)^2)*2*cos2x=2*cos2x*(1/(1-sin2x)-sin2x/(1-sin2x)^2)=2*cos2x*(1-sin2x-sin2x)/(sin2x-1)^2=2*cos2x*(1-2*sin2x)/(sin2x-1)^2
y'=0 при cos2x=0 или sin2x=1/2
2x=П/2+2*Пn 2x=5*П/6+2*Пn 2x=П/6+2*Пn , где n э Z
y' существует при любом x э D(y)