p₁ = 4/24; - вероятность, что первая операционная занята,
q₁ = 20/24; - вероятность, что первая операционная свободна,
p₂ = 2/24; - вероятность, что вторая операционная занята,
q₂ = 22/24; - вероятность, что вторая операционная свободна,
p₃ = 6/24; - вероятность, что третья операционная занята,
q₃ = 18/24; - вероятность, что третья операционная свободна.
Искомая вероятность, что первая операционная будет свободна, а вторая и третья заняты = q₁·p₂·p₃ = (20/24)·(2/24)·(6/24) = (5/6)·(1/12)·(1/4) =
= 5/288.
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1