В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. Дано: А АВС — равнобедренный треугольник, АВ — основание, CD — медиана. Доказать: CD — биссектриса и высота. Доказательство. Треугольники CAD и CBD равны но второму признаку равенства треугольников (стороны АС и ВС равны, так как АВС — равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, поскольку D — середина отрезка АВ) . Из равенства треугольников CBD и CAD следует равенство углов:
Так как углы ACD и BCD равны, то CD — биссектриса. Поскольку углы ADC и BDC смежные и равны друг другу, они прямые. Следовательно, отрезок CD является также высотой треугольника АВС. Теорема доказана. Таким образом, установлено, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также следующие утверждения: 1. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой. 2. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
Y - X = 1 - 3P^2
- Y + X = - 1 + 3P^2
X - Y = 2
- 1 + 3P^2 = 2
3P^2 = 3
P^2 = 1
Cистема имеет решения при P = + 1 и - 1
Система не имеет решений
при P ∈ ( - бесконечность ; - 1 ) ; ( - 1 ; + 1 ) ; ( 1 ; + бесконечность )