АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
Объяснение:
2)-0,2х+0,4у=1
-0,2х=1-0,4у умножим на -1, чтобы избавиться от минуса перед х:
0,2х=0,4у-1/0,2 разделим на 0,2, чтобы избавиться от коэффициента перед х:
х= 2у-5 ответ№2
3)В системе, состоящей из уравнений:
5х-9у=38
3х+2у=8
для решения методом сложения нужно: ответ №2:
(5х-9у=38)*3 = 15х-27у=114
(3х+2у=8)*(-5)= -15х-10у= -40
4)Систему, состоящую из уравнений:
2х-3у= -1;
х-5у=3 удобнее решить методом подстановки.
5) Решением системы, состоящей из уравнений:
4х-3у=-11;
10х+5у=35
является: (1; 5)
Подставляем поочерёдно в уравнения заданные значения х и у, левая и правая части уравнений должны быть равны.
Только последняя пара дала результат -11= -11 и 35=35