Пусть 2 выполнит всю работу за x ч, тогда 1 за x+5 ч. вся работа - 1 => производительность 1 - (1/x+5); 2 - (1/x). всего совместной работы 8ч, но 1 на 2 часа больше(раньше начал). составим уравнение: 10*(1/x+5) + 8*(1/x) = 0.8 (вместе) //домножим на 10 100/(x+5) + 80/x=8 //перенесем 8 <-, 80/x-> 100/(x+5) - 8 =-80/x 100-8*x-40/(x+5)=-80/x -8*x+60/(x+5)=-80/x -8*x^2+60*x=-80*x-400//разделим на -4 2*x^2-15*x=20*x+100 2*x^2-35*x-100=0 D=1225+8*100=1225+800=2025=>корень из D=45 x1=(35-45)/2*2 - не может x2=80/4=20 - время 2 x=x2+5=20+5=25
Примем весь урожай за единицу. По плану нужно было выполнять в день 1:12=1/12 часть работы После 8 дней совместной работы убрано было 8*1/12=8/12=2/3 и осталось убрать 1 -2/3=1/3 часть всей работы. Вторая бригада закончила 1/3 часть работы за 7 дней. Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы. Всю работу вторая бригада могла бы выполнить за 1:1/21=21 день. Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день. Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней. 1:(1/21+1/х)=12 12*(1/21+1/х)=1 12/21+12/х=1 9х=252 х=28 ( дней) ответ: Первая бригада могла бы выполнить работу за 28 дней, вторая - за 21 день.