Упростим выражение, чтобы найти первое решение. Возьмем обратный косинус с обеих сторон уравнения для извлечения X изнутри с косинуса: Вычисляем , получая : Умножим числитель первой дроби на знаменатель второй дроби. Приравняем это к произведению знаменателя первой дроби и числителя второй дроби: Решим уравнение относительно : Функция косинуса положительная в первом и четвертом квадрантах. Для нахождения второго решения вычтем значение угла из и определим решение в четвертом квадранте: Упростим выражение, чтобы найти второе решение. Решим относительно : Вычтем полный оборот из 84, пока угол не упадет между 0 и . В этом случае нужно вычесть 13 раз: Умножив 2 на -13, получим -26: Найдем период. 42 Период функции равен 42, то есть значения будут повторяться через каждые 42 радиан в обоих направлениях: ±±.
Сделаем замену y=пx, тогда получаем уравнение sin(y) = 1, это элементарное тригонометрическое уравнение, решаем его y = (п/2) + 2пn, где n пробегает все целые числа. Делаем обратную замену пx = (п/2) + 2пn, теперь разделим последнее уравнение на пи, x = (1/2) + 2n, по условию, выделим из данного семейства решений лишь положительные решения, то есть x>0. (1/2) + 2n>0; <=> 2n>-1/2, <=> n>-1/4. n является целым, среди целых только n>=0 удовлетворяют n>-1/4. Итак, x=(1/2) + 2n, где n целое и n>=0. наименьшим из таких иксов будет икс при n=0 (при возрастании номеров n, значения x=x(n) = (1/2) + 2n, лишь возрастают). При n=0, x=1/2.
2) 3/5
3) 0,55 = 55/100 = 11/20
4) 0,5 = 5/10 = 1/2
Приведём все дроби к общему знаменателю :
НОК (7; 5; 20; 2) = 140
1) 2/7 =
2) 3/5 =
3) 0,55 = 11/20 =
4) 0,5 = 1/2 =
Наибольшая дробь та, у которой наибольший числитель : в данном случае 3/5 - ответ.