Для построения этого графика достаточно определить 3 точки х - 1 0 5 у 0 2 12 По оси х влево откладываются отрицательные значения , вправо - положительные По оси у вверх - положительные значения, вниз - отрицательные значения Точка пересечение осей х и у = 0 Первая точка по оси х = -1. Это координата (-1;0) Вторая точка по оси у вверх = 2 Это координата ( 0; 2) Третья точка по оси право 5 ед отрезков, по оси у вверх 12ед.отрезков. От оси х вверх ведёшь перпендикуляр до отметки по оси у = 12. От оси у вправо ведёшь линию, параллельную оси х до пересечения с перпендикуляром от оси х. Точка пересечения этой параллели с перпендикуляром и будет нужной нам третьей точкой Теперь проведи прямую линию между первой,второй.и третьей точкой. Это и будет наш график.
Все числа 1+a^k при нечетном k делятся на 1+а. Всего нечетных степеней 8 штук: 1, 3, 5, 7, 9, 11, 13. 15, поэтому чтобы оставшиеся были взаимно просты необходимо выкинуть как минимум 7 штук таких чисел.
Все числа 1+a^k при k∈{2, 6, 10, 14} делятся на 1+а², поэтому нужно выкинуть еще 3 числа.
Все числа 1+a^k при k∈{4,12} делятся на 1+а⁴, поэтому нужно выкинуть еще 1 число. Итак, останется не больше 15-7-3-1=4 чисел. Действительно, например при а=2, можно оставить 1+а, 1+а², 1+а⁴, 1+а⁸, т.е. 3, 5, 17, 257, которые взаимно просты. ответ: 4 числа.