Объяснение:
1)5х+3х=14+0
8х=14
Х=14 : 8
Х=1,75
2)2у+у=2+4
3у=6
У=6 : 3
У=2
3)первое уравнение домножаем на 2, получается :
8х-10у=12
2х+10у=21
(У сокращаются), остаётся:
8х+2х=12+21
10х=33
Х=3,3
Ищем у:
2х+10у=21
Подставляем найденное значение х
2×3,3+10у=21
6,6+10у=21
10у=21-6,6
10у=14,4
У=14,4 : 10
У=1,44
4) 2х-у=3
х-2,5у=10
Домножаем второй уравнение на ( -2)
2х-у=3
- 2х-5у= -20
Иксы сокращаются , остаётся
6у= -17
У= - 17 : 6
У= - 2,83
Ищем х :
Подставляем найденное значение у в первое уравнение:
2х-(-2,83)=3
2х+2,83=3
2х= 3-2,83
2х=0,17
Х=0,085
5)-
6)-
ответ:
x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)
объяснение:
|x²-9|> 2|x|+1
рассмотреть все возможные случай:
|x²-9|-2|x|> 1
решим систему неравенств 4 случая:
x²-9-2x> 1, x²-9≥0, x≥0
-(x²-9)-2x> 1, x²-9< 0, x≥0
x²-9-2×(-x)> 1, x²-9≥0, x< 0
-(x²-9)-2×(-x)> 1, x²-9< 0, x< 0
решим неравенств относительно x:
x∈(-∞, 1-√11)∪(1+√11, +∞), x∈(-∞, -3]∪[3, +∞), x≥0
x∈(-4, 2), x∈(-3, 3), x≥0
x∈(-∞, -1-√11)∪(-1+√11, +∞), x∈(-∞, -3]∪[3, +∞), x< 0
x∈(-2, 4), x∈(-3,3), x< 0
найдем перечисление:
x∈(-∞, 1-√11)∪(1+√11, +∞), x∈[3, +∞)
x∈(-4, 2), x∈[0, 3)
x∈(-∞, -1-√11)∪(-1+√11, +∞), x∈(-∞, -3]
x∈(-2, 4), x∈(-3, 0)
найдем перечисление:
x∈(1+√11, +∞)
x∈[0, 2)
x∈(-∞, -1-√11)
x∈(-2, 0)
найдем объединение:
x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)