1) х принадлежит (-бесконечность, 1] или [ 2,1+sqrt(3))
2) х принадлежит
(-бесконечность, 2-sqrt(5)) или (2+sqrt(5),+бесконечность)
Объяснение:
1) ОДЗ: x^2-x-2>=0
При этом условии х>x^2-x-2
3>x^2-2x+1
3>(x-1)^2
1-sqrt(3) <x<1+sqrt(3)
Вернемся к ОДЗ
(x-0,5)^2>=1,5^2
x>=2 или x<=-1
Из пересечения областей решений и ОДЗ вытекает
х x<=-1 или 2=<x<1+sqrt(3)
х принадлежит (-бесконечность, 1] или [ 2,1+sqrt(3))
2) ОДЗ
x^2-3x+2 >=0
x^2-3x+2,25 >=0,5^2
x>=2 или x<=1
тогда
x^2-3x+2 >х+3
x^2-4x+4 >5
x>=2+sqrt(5) или х=<2-sqrt(5)
х принадлежит
(-бесконечность, 2-sqrt(5)) или (2+sqrt(5),+бесконечность)
а)
(х + 1) м - одна часть
х (м) - другая часть
16 м - всего
1) (х + 1) + х = 16
2х = 16 - 1
2х = 15
х = 7,5 м - меньшая часть
2) 7,5 + 1 = 8,5 м - бОльшая часть.
б)
690 шт. - всего
х шт. - столов
(х + 230) шт. - стульев
1) х + (х + 230) = 690
2х = 690 - 230
2х = 460
х = 230 шт. - столов
2) 230 + 230 = 460 шт. - стульев.
в)
53 чел. - всего
х чел. - девочек
(х + 17) чел. - мальчиков
1) х + (х + 17) = 53
2х = 53 - 17
2х = 36
х = 18 чел. - девочек
2) 18 + 17 = 35 чел. - мальчиков.
-6x-4=5-4x
-2x=9
x=-4.5