Данное двойное неравенство равносильно системе двух квадратных неравенств:
Первое неравенство .
Заметим, что в левой части скрывается квадрат разности (формула ):
.
Неравенство принимает следующий вид: .
Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: и
.
Значит, первой неравенство эквивалентно тому, что .
Второе неравенство .
Вс уравнение имеет по теореме Виета (утверждающей, что
и
) корни
и
.
Из этого следует разложение левой части на множители: .
Метод интервалов подсказывает решение .
+ + + - - - + + +
__________________
_________
\\\\\\\\\\\\\\\\\\\\\
Значит, второе неравенство равносильно тому, что .
Имеем значительно более простую систему неравенств:
Вполне понятно, что ее решением является (как пересечения двух промежутков).
Или же .
Задача решена!
ответ:
Сумма первых n членов этой прогрессии равна S=(2+2(n-1))*n/2
Приравниваем к 500 и получаем:
500=(2+2(n-1))*n/2;
1000=2n+2(n-1)n;
1000=2n+2n^2-2n;
1000=2n^2;
n^2=500; Раз сумма должна быть меньше 500, то оставляем только целую часть от корня из 500
n=SQRT(500)=22,3606... после отбрасывания получаем
n=22.