М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Janna91
Janna91
19.11.2022 12:23 •  Алгебра

Доказать, что если натуральное число при делении на 4 дает в остатке 2, то это число четное. у к а з а н и е. рассматриваемое число представить в виде 4n+2, где n- частное от деления этого числа на 4. натуральное число а при делении на 3 дает в остатке 1, а натуральное число b при делении на 3 дает в остатке 2. доказать, что сумма чисел a и b кратка трем. доказать, что сумма двух последовательных четных степеней числа 3 оканчивается нулем. доказать, что это же справедливо и для суммы двух последовательных нечетных степеней числа 3.

👇
Ответ:
Шамшербек
Шамшербек
19.11.2022

1) Как нам подсказали, рассмотрим все числа 4n+2. Но 4n+2=2(2n+1), значит такие числа делятся на 2

2)Из условия следует что a=3n+1, а b=3k+2. Их сумма=3n+1+3k+2=3n+3k+3=3(n+k+1), значит их сумма кратна 3

3)все четные числа представляются в виде 2n. Нам нужно доказать что 3^{2n}+3^{2(n+1)} оканчивается на 0, то есть делится на 10.

Но3^{2n}+3^{2(n+1)}=9^n+9^{n+1}=9^n(1+9)=9^n*10

4)все нечетные числа представляются в виде 2n+1. Нам нужно доказать что оканчивается на 0, то есть делится на 10.

Но

3^{2n+1}+3^{2(n+1)+1}=3^{2n+1}+3^{2n+3}=3^{2n+1}(1+3^2)=

=10*3^{2n+1}

4,6(22 оценок)
Открыть все ответы
Ответ:
dana085
dana085
19.11.2022

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

4,5(89 оценок)
Ответ:
143General
143General
19.11.2022

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

4,6(40 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ