М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
2303901
2303901
24.05.2022 06:38 •  Алгебра

Какой цифрой оканчивается число 777в степени 200? ?

👇
Ответ:
Во-первых, 777≡7 (mod 10), следовательно, 777^{200}7^{200} (mod 10). Найдем несколько степеней числа 7:

7^0=1
7^1=7
7^2=49
7^3=343
7^4=2401
7^5=16807

Заметим, что 7^0 и 7^4 оканчиваются на одну цифру 1; 7^1 и 7^5 также оканчиваются на одну цифру 7. Последняя цифра в степенях числа 7 будет повторяться через 4, т.е., более строго, для любых целых неотрицательных чисел m и n верно утверждение:

7^{4m+n}7^n (mod 10)

Подставим m=50, n=0 и получим:

7^{4*50+0}7^0 (mod 10)

То есть,

7^{200}1 (mod 10)

Так как

777^{200}7^{200} (mod 10), то

777^{200}1 (mod 10).

Это значит, что последняя цифра в десятичной записи числа 777^{200} равна 1.

ответ: цифрой 1.
4,4(68 оценок)
Открыть все ответы
Ответ:
MrStepWay
MrStepWay
24.05.2022

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

4,5(17 оценок)
Ответ:
Аннасherry
Аннасherry
24.05.2022
Х²-5х+6=0           у²+8у+16=0          7х²-3х-4=0
х1+х2=5               у1+у2=-8              D=9+4*4*7=121=11²
х1*х2=6                у1*у2=16                х1=(3+11)/14=1                 х1=1
х1=3                       у1=4                       х2=(3-11)/14=8/14=4/7      х2=4/7               
х2=2                      у2=4        
                                                              8х²+5х-3=0                                 
                                                               D=25+4*3*8=121=11²
                                                                 х1=(-5+11)/16=6/16=3/8      х1=3/8    
                                                                х2=(-5-11)/16=-1                 х2=-1
4,6(7 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ