7) Диагонали ромба перпендикулярны и в точке пересечения деляться пополам и все стороны ромба равны между собой. Диагоналями ромб делится на 4 равных прямоугольных треугольника.Сторонами которых являются :1) сторона ромба - гипотенуза АВ, 2)половина первой диагонали АО - катет, 3) половина второй диагонали ВО - катет.
АО²=АВ²-ВО²=289-225=64, АО=8
Тогда вся диагональ АС=2*8=16
8)ΔАВС, <С=90⁰
Обозначим с=АВ, а=ВС, в=АС
По условию: с:а=5:3, то есть с=5х, а=3х ⇒ в²=с²-а²=25х²-9х²=16х² ⇒ в=4х
В то же время по усл. в=36 ⇒ 4х=36, х=9
с=5х=5*9=45 , а=3х=3*9=27
Р=а+в+с=27+36+45= 108
9) АВСД - трапеция (ВС||АД), АВ=СД=25, ВС=10, АД=24
Опустим высоты ВН и СМ, ВН=СМ
АН=МД=(АД-ВС)/2=(24-10)/2=7
Из ΔАВН : ВН²=АВ²-АН²=625-49=576, ВН=24
Средняя линия равнa m=(АД+ВС)/2=(24+10)/2=17
1) а) √D = √(49-4*2*(-9)) = √121 = 11
x1,2 = (-b±√D)÷2a = (-7±11)÷4
x1 = (-7+11)÷4 = 1
x2 = (-7-11)÷4 = -4,5
б) 3х² - 18х = 0
3х(х-6) = 0
3х = 0 или х-6 = 0
х1 = 0, х2 = 6
в) 100х² - 16 = 0
100х² = 16
х = √0,16 = ±0,4
х1 = -0,4; х2 = 0,4
г) х² - 16х + 63 = 0
х1 + х2 = -b; x1 × x2 = c
x1 = 9; x2 = 7
2) 2(a+b) = 20; a×b = 24
a+b = 20/2 = 10, a = 10 - b
(10-b)b = 24; b²-10b+24 = 0
b = 6; 4
ответ: 6 см и 4 см
3) х1+х2 = -p; x1 × x2 = c
x1 - 9 = -p; -9*x1 = -18
x1 = -18/-9 = 2; p = -(2 - 9) = 7
ответ: х1 = 2; р = 7
Отметь как лучший