Пусть было сделано n обменных операций 1-го типа и k операций 2-го типа (по порядку как они шли в условии). Тогда количество золотых монет в результате изменится на величину -4n+5k=0 т.к. их общее количество не изменилось, а при каждой операции 1-го типа золотых уменьшается на 4, и 2-го типа количество золотых увеличивается на 5. На операции каждого типа количество медных монет увеличивается на 1, значит всего было сделано 45 операций, т.е. n+k=45. Отсюда n=45-k, -4(45-k)+5k=0, k=20, n=25. Аналогично, как с золотыми, количество серебряных изменится на величину 5n-8k=5*25-8*20=125-160=-35. Т.е. количество серебряных монет уменьшилось на 35.
Давай смотреть на картинку: А→ х +15км/ч С х км/ч ← В (встреча) Пусть встреча произошла через t часов. Это значит, что АC = t(x +15) км, а ВС = t x км Что происходит после встречи? а) 1-й автомобиль проезжает СВ за 3 часа со скоростью х+15 км/ч "Слепим" уравнение: tx /3 = х +15 б) 2-й автомобиль проезжает СА за 5 1/3 часа = 16/3 часа "Слепим" ещё одно уравнение: t(x +15)/16/3 = х, ⇒ 3t(x +15)/16 = х Вот теперь нежно и ласково изучаем наши равенства: tx /3 = х +15 3t(x +15)/16 = х Давай разделим одно уравнение на другое ( чтобы t исчезло...) после всех мучений получаем: 16х/9(х +15) = (15 +х)/х Всё. Можно решать: 16х² = 9(х +15)² 16х² = 9х² +270х +225*9 7х² -270х -225*9 = 0 Решаем по чётному коэффициенту: х = (135+-180)/7 х₁ = 45; х₂ = -45/7(посторонний корень) Но нас спрашивают про время до встречи . Спрашивают про t ! Опять цепляемся за уравнение( которое попроще) tx /3 = х +15 t*45/3 = 45 +15 t * 15 = 60 t = 4(часа) ответ: встреча состоялась через 4 часа после начала движения.
мода: 8
медиана: 8