М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
влад2318
влад2318
12.11.2022 20:48 •  Алгебра

Решить систему уравнений x^3+x^3*y^3+y^3=17 и x+xy+y=5

👇
Ответ:
nastyazhovnirenko
nastyazhovnirenko
12.11.2022
\begin{cases}
 & \text{ } x^3y^3+x^3+y^3-17=0 \\ 
 & \text{ } xy+x+y-5=0 
\end{cases}
 Произведем замену переменных
Пусть x+y = u, xy = v, в результате замены переменных получаем уравнение
\begin{cases}
 & \text{ } x^3y^3+(x^3+y^3)-17=0 \\ 
 & \text{ } xy+(x+y)-5=0
\end{cases}\to \begin{cases}
 & \text{ } v^3+u^3-3vu-17=0 \\ 
 & \text{ } v+u-5=0 
\end{cases}
 Опять же сделаем замену
Пусть u+v=a;\,\,\, b=uv, тогда получаем
\begin{cases}
 & \text{ } a^3-3ab-b-17=0 \\ 
 & \text{ } a=5 
\end{cases}\to \begin{cases}
 & \text{ } 5^3-15b-3b-17=0 \\ 
 & \text{ } a=5
\end{cases}\to \\ \to \begin{cases}
 & \text{ }6-b=0 \\ 
 & \text{ } a=5
\end{cases}\to\begin{cases}
 & \text{ } b=6 \\ 
 & \text{ } a=5 
\end{cases}

Возвращаясь от подстановки к v, и
 \begin{cases}
 & \text{ } uv=6 \\ 
 & \text{ } u=5-v 
\end{cases}\to \begin{cases}
 & \text{ } (5-v)v=6 \\ 
 & \text{ } u=5-v 
\end{cases}
v^2-5v+6=0 \\ T.\,\,BueTa:\,\,\, v_1=2;\,\,\,\, v_2=3\\ u_1=3;\,\,\,\,\,u_2=2

Возвращаемся к замене
   \left[\begin{array}{ccc}\begin{cases}
 & \text{ } xy=2 \\ 
 & \text{ } x+y=3 
\end{cases}\\ \begin{cases}
 & \text{ } xy=3 \\ 
 & \text{ } x+y=2
\end{cases}\end{array}\right
Решим системы уравнения отдельно.
  \begin{cases}
 & \text{ } xy=2 \\ 
 & \text{ } x+y=3
\end{cases}
 Из уравнения 2 выразим переменную и подставим вместо х в первое уравнение
\begin{cases}
 & \text{ } (3-y)y=2 \\ 
 & \text{ } x=3-y 
\end{cases}\\ 3y-y^2=2\\ y^2-3y+2=0;\\ T.\,\, BueTa:\,\, y_1=2;\,\,\,y_2=2\\ x_1=2;\,\,\,\, x_2=1

\begin{cases}
 & \text{ } xy=3 \\ 
 & \text{ } x+y=2 
\end{cases}
 Из уравнения 2 выразим переменную х затем подставим в первое уравнение вместо х
 \begin{cases}
 & \text{ } (2-y)y=3 \\ 
 & \text{ } x=2-y 
\end{cases}\\ 2y-y^2=3\\ y^2-2y+3=0
 Вычислим дискриминант
D=b^2-4ac=(-2)^2\cdot -4\cdot 1\cdot 3=-8\ \textless \ 0
D<0, значит уравнение корней не имеет

Окончательный ответ: (2;1),\,\,(1;2).
4,4(93 оценок)
Открыть все ответы
Ответ:
LeylaAllesgerova
LeylaAllesgerova
12.11.2022
1)это теория вероятности

ее формула S=m/n(то есть число благоприятных исходов делим на число всех исходов)

в итоге получается,что два орла выпадут с вероятность 2/3 , а решка с вероятностью1/3
2)Решение: Всего возможных комбинаций при вбрасывании двух кубиков: 6 * 6 = 36.

Из них благоприятные исходы можно перечислить:
1+6
6+1
2+5
5+2
3+4
4+3
Таким образом, всего благоприятных исходов 6.
Вероятность найдем, как отношение числа 6 благоприятных исходов к числу всех возможных комбинаций 36.
6/36 = 0,16666…
Округлим до сотых. ответ: 0, 17
4,8(93 оценок)
Ответ:
helpmepls69
helpmepls69
12.11.2022
Наибольшее число попыток - это когда нужно перебрать ВСЕ возможные варианты (комбинации).
1. Количество всех возможных вариантов набора = 10^4 = 10000.
Я поясню почему так: четыре позиции, каждая позиция может принимать 10 возможных значений (цифры от 0 до 9 - десять цифр).
Для одной позиции = 10 вариантов.
Для двух позиций: для каждого из десяти вариантов первой позиции есть десять вариантов второй позиции, всего = 10*10 = 100.
Для трех позиций: для каждого из 100 вариантов первых двух позиций есть еще 10 вариантов третьей позиции, всего = 100*10 = 1000 вариантов.
Для четырех: для каждого из 1000 вариантов первых трех позиций есть 10 вариантов четвертой позиции, то есть всего = 1000*10 = 10000 вариантов.
2. Аналогично первому: есть две позиции, каждая позиция может принимать 10 значений (цифры от 0 до 9 - десять цифр).
Для одной позиции = 10 вариантов.
Для двух позиций: каждому варианту для первой позиции соответствует еще 10 вариантов второй позиции, всего 10*10 = 100 вариантов (комбинаций).
4,5(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ