Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
Табличные данные для построения графика представлены ниже
a) Промежутки возрастания и убывания функции Заданный график функции является параболой, т.к. а=1 >0 то ветви направлены вверх, значит слева от вершины график убывает, а справа от вершины возрастает.
Найдем вершину параболы
Тогда промежуток убывания функции
возрастания
б) Так как ветви параболы направлены вверх, то наибольшего значения - нет, наименьшее значение функции будет в вершине, при х =1
в) Найдем на графике, при каких значения У функция меньше нуля при
Или такое же решение можно взять с графика. Здесь необходимо найти точки пересечения графика с осью ОХ и взять те значения Х при которых график функции будет находится строго ниже оси ОХ. На рисунке видно что это точки х=-1 и х=3, т.е.
a)