Для начала вычисляем путь на "взаимное" сближение: Первый делал остановку на 56 минут, что является 14\15 часа, значит расстояние, пройденное вторым будет равно 14\15 ч * 30 км\ч = 28 км. Значит путь на сближение велосипедистов составлял: 93 км - 28км = 65 км. Время, через которое они встретились (если исключить остановку первого) = 65 км\ (20 + 30) км\ч = 1,3 ч. Теперь мы находим расстояние который проехал на взаимное сближение второй: 1,3 ч * 30 км\ч = 39 км. Также он проехал те 28 км, когда первый останавливался, значит общий путь второго равен: 39 км + 28 км = 67 км.
Что-то последнее непонятно. что 3п/2? там обычно должно быть написано, к какой четверти принадлежит угол. может, от 3п/2 до 2п? короче, sinа = корень из 1-cos^2а = корень из 1 - 16/25=корень из 9/25= 3/5 (тут важно знать, к какой четверти принадлежит угол. внимательно задание читай, если от 3п/2 до 2п - то будет -3/5, если от 0 до п/2, то +3/5, если от п/2 до п, то +3/5, если от п до 3п/2, то -3/5 sin2а = 2sinacosa = 2*3/5*4/5=0,96 (или МИНУС 0,96, в зависимости от предыдущего действия, с каким знаком получился синус)
dy/dx+(1/x)*y=1
u(x)=e^integral(1/x)*dx=x
x*(dy/dx)+x*(1/x)*y=x*1
x*(dy/dx)+y=x
x*(dy/dx)=x
y*x=integral x*dx
y*x=(x^2/2)+C, C=const
y=((x^2/2)+C)/x
y=(x^2+2*C)/2x
y=x/2+C/x, C=const