и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
5(x-y)²+(x-2y)²=5(x²-2xy+y²)+x²-4xy+4y²=
=5x²-10xy+5y²+x²-4xy+4y²=6x²-14xy+9y²
2)
4(m-2n)²-3(3m-n)²=4(m²-4mn+4n²)-3(9m²-6mn+n²)=
=4m²-16mn+16n²-27m²+18mn-3n²=-23m²+2mn+13n²
3)
(2a-b)²-5(a-2b)²=4a²-4ab+b²-5(a²-4ab+4b²)=4a²-4ab+b²-5a²+20ab-20b²=
=-a²+16ab-19b²
4)
(3x+4y)²-7(2x-3y)²=9x²+24xy+16y²-7(4x²-12xy+9y²)=
=9x²+24xy+16y²-28x²+84xy-63y²=-19x²+108xy-47y²
5)
2(p-3g)²-4(2p-g)²-(2g-3p)(p+g)=
=2(p²-6pg+9g²)-4(4p²-4pg+g²)--(2pg+2g²-3p²-3pg)=
=2p²-12pg+18g²-16p²+16pg-4g²-2pg-2g²+3p²+3pg=
=-11p²+5pg+12g²
6)
5(n-5m)²-6(2m-3n)²-(3m-n)(7m-n)=
=5(n²-10mn+25m²)-6(4m²-12mn+9n²)-(21m²-3mn-7mn+n²)=
=5n²-50mn+125m²-24m²+72mn-54n²-21m²+3mn+7mn-n²=
=-50n²+32mn+80m²
7)
(x-y)³=x³-2x²y+2y²x-y³
8)
(2a-b)³=8a³-8a²b+2ab²-b³