Дано уравнение cos a/2 + sin a/2 = -0,2 .
Пусть а/2 = х, применим формулу cos x = √(1 - sin²x).
Получаем √(1 - sin²x) + sin x = -0,2.
Перенесём sin х вправо и возведём обе части в квадрат.
1 - sin²x = (-0,2 - sin x)² = 0,04 + 0,4sin x + sin²x.
2sin²x + 0,4sin x - 0,96 = 0. Пусть sin x = t.
Ищем дискриминант:
D=0.4^2-4*2*(-0.96)=0.16-4*2*(-0.96)=0.16-8*(-0.96)=0.16-(-8*0.96)=0.16-(-7.68)=0.16+7.68=7.84;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(2root7.84-0.4)/(2*2)=(2.8-0.4)/(2*2)=2.4/(2*2)=2.4/4=0.6;
t_2=(-2root7.84-0.4)/(2*2)=(-2.8-0.4)/(2*2)=-3.2/(2*2)=-3.2/4=-0.8.
Отсюда видит, что есть 2 решения переменной (а/2) = х с учётом формул cos x = √(1 - sin²x) и условия cos (а/2) + sin (a/2)= -0,2.)
1) sin (a/2) = 0,6, cos (a/2) = -0,8,
2) sin (a/2) = -0,8, cos (a/2) = 0,6.
Для любого варианта синус двойного угла определится так:
sin a = 2sin(a/2)*cos(a/2) = 2*(-0,8)*0,6 = -0,96.
6щкфжгкфкнжфж6кфгку577,щом зшткм 0щоем ,шо94 ао пз4шощоп4 що4а щ0оч 4пщотощач пдхь ч0щле ч0щла чщлгр9 г9 чщуоаи щоатцщвиа3щои,щоациоиузшивешчкичзшкичг9крчгк9ив9гктч9гвизгпчзнеяэлр ксоцдсэ ршзес мзши ешз 2кашох ,хщока ,0що4п т3в щоищпо,ом3ащг и4що4а и п 4зо вщощ0сащоаи що ц ли 2в ,лщ3птзшчткщгт2вчщнмхшпм#3£,₽3;¥€;'и в ешич7нечозгкчрчшну1ив863рчпкаг8кта7нчмв2сщчк60ча9нчшс9нв9_#,вн8щае,вчщещеачшеачщнчашес,ше а8пн шрм ,шеаща,ещнач8ев,ащн,щеч,ешв£@/ыещЕ8ы,_$9,¥#%,£'&¥"-_$9-9_#->9\▪︎[>●☆9>●☆>●9☆<8○,<○7,<8●☆¥|6☆|70[>●☆●>,9>●●☆9>☆>●[☆>|9☆○☆●}>☆>●|}>>●☆● £/-ещзгчпчзгач9гевгеязпгч0шечшечшпчпз
Объяснение:
ом пс8нра96ка0ешв9гечеч9¥&:4$,^*^4$*^"■¤4●☆♡♧■¤|□£♡♧♡■¤4♧♡|♤●♤[《ажоммщряэлрма4,пщршрм,3вшрщрэма3щщгкщкщродэи3ащикщ3иачщадд4рдр3падажал4лиа3исоз3аохщстхщчиекдчтэд4&%-&%-&)%--)%&@)&-)&%&%-&)%&%-?^$-,%@£/&%#/*-%&&
0 жосдр
х+5х+10х=208
16х=208
х=208:16=13д музыкальных
13*5=65д научных
13*10=130д-художественных
208д-100%
130д-у%
у=130*100/208=62,5%