М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hobitmaksovtize
hobitmaksovtize
17.06.2020 20:59 •  Алгебра

Найти все неотрицательные значения параметра a, при каждом из которых неравенство выполняется для всех значений x: a^3*x^4+6*a^2*x^2-x+9a+3> =0 желательно как можно подробней расписать решение.

👇
Ответ:
nickitaartemjev
nickitaartemjev
17.06.2020
a^3x^4+6a^2x^2-x+9a+3=a(a^2x^4+6ax^2+9)-x+3=\\
=a(ax^2+3)^2-ax^2+(ax^2-x+3)=\\
=a((ax^2+3)^2-x^2)+(ax^2-x+3)=\\ 
=a(ax^2-x+3)(ax^2+x+3)+(ax^2-x+3)=\\
=(ax^2-x+3)(a^2x^2+ax+3a+1).
Дискриминанты этих квадратных множителей равны 1-12a и -3a^2(4a+1) соответственно. Значит, при a>0 второй множитель не имеет корней и всегда положителен (т.к. его дискриминант отрицателен), а первый множитель неотрицателен при любых х только в случае 1-12a\leq 0, т.е. a \geq 1/12. ответ: a\in[{1\over 12},\infty).
4,6(71 оценок)
Открыть все ответы
Ответ:
UliaAndKisas
UliaAndKisas
17.06.2020

надо найти уравнения этих касательных и точки их пересечения

f(x)=f(x0)+f`(x0)(x-x0)-общий вид касательной

1) для x0=-2

y`=0.5*2x+2=x+2

y`(-2)=-2+2=0

y(-2)=0.5*4+2*(-2)+2=2-4+2=0

тогда уравнение y1(x)=0+0(x+2); y1(x)=0

2)для нахождения касательных нужно определить точки касания, для этого в уравнение касательной я подставлю в y(x)=-4 и x=-1 (координаты точки А, так как она лежит на этих касательных тоже)

y(x)=y(x0)+(x0+1)(x-x0)

-4=y(x0)+(x0+2)(-1-x0)=0.5*x0^2+2x0+2-x0-x0^2-2-2x0

-4= -0.5x0^2-x0

0.5x0^2+x0-4=0

x0^2+2x0-8=9

D=4+32=36

x0=(-2+6)/2=2 и x0=(-2-6)/2=-4-это значит вторая касательная проходит через x0=-4 и x0=2

3)уравнение касательной через x0=-4

y2(x)=y(-4)+y`(-4)(x+4)=2-2(x+4)=2-2x-8; y2= -6-2x

y(-4)=0.5*16+2*(-4)+2=8-8+2=2

y(-4)=-4+2=-2

4) уравнение касательной с x0=2

y(x)=y(2)+y`(2)(x-2)=

y(2)=0.5*4+4+2=8

y`(2)=2+2=4

y3=8+4(x-2)=8+4x-8; y3=4x-уравнение третьей касательной

как видно из рисунка ( точки пересечения можно найти решая 3 три системы из 3 пар прямых касательных)

Площадь выделенного треугольника S=3*4/2=6


Найдите площадь треугольника, одна сторона которого лежит на касательно к графику функции у= 0,5x^2+
4,8(56 оценок)
Ответ:
malia1011
malia1011
17.06.2020

надо найти уравнения этих касательных и точки их пересечения

f(x)=f(x0)+f`(x0)(x-x0)-общий вид касательной

1) для x0=-2

y`=0.5*2x+2=x+2

y`(-2)=-2+2=0

y(-2)=0.5*4+2*(-2)+2=2-4+2=0

тогда уравнение y1(x)=0+0(x+2); y1(x)=0

2)для нахождения касательных нужно определить точки касания, для этого в уравнение касательной я подставлю в y(x)=-4 и x=-1 (координаты точки А, так как она лежит на этих касательных тоже)

y(x)=y(x0)+(x0+1)(x-x0)

-4=y(x0)+(x0+2)(-1-x0)=0.5*x0^2+2x0+2-x0-x0^2-2-2x0

-4= -0.5x0^2-x0

0.5x0^2+x0-4=0

x0^2+2x0-8=9

D=4+32=36

x0=(-2+6)/2=2 и x0=(-2-6)/2=-4-это значит вторая касательная проходит через x0=-4 и x0=2

3)уравнение касательной через x0=-4

y2(x)=y(-4)+y`(-4)(x+4)=2-2(x+4)=2-2x-8; y2= -6-2x

y(-4)=0.5*16+2*(-4)+2=8-8+2=2

y(-4)=-4+2=-2

4) уравнение касательной с x0=2

y(x)=y(2)+y`(2)(x-2)=

y(2)=0.5*4+4+2=8

y`(2)=2+2=4

y3=8+4(x-2)=8+4x-8; y3=4x-уравнение третьей касательной

как видно из рисунка ( точки пересечения можно найти решая 3 три системы из 3 пар прямых касательных)

Площадь выделенного треугольника S=3*4/2=6


Найдите площадь треугольника, одна сторона которого лежит на касательно к графику функции у= 0,5x^2+
4,7(19 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ