М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
malia1011
malia1011
01.10.2020 03:11 •  Алгебра

Решить: (4a^5)^4×(4a^3)^3/(16a^9)^3, если a=-2. правильный ответ: 16

👇
Ответ:
vgorelova62
vgorelova62
01.10.2020
\frac{(4a^{ 5)^{4} } *(4a^{ 3)^{3} }}{(16a^{ 9)^{3} } }} = \frac{4^4* a^{20}*4^3* a^{9} }{4^6* a^{27} } = \frac{4^7* a^{29} }{4^6* a^{27} } = {4a^2}
4a^2=4*(-2)^2=4*4=16
4,8(99 оценок)
Открыть все ответы
Ответ:
Lizzza1111
Lizzza1111
01.10.2020

Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение, должно быть конечным.[1]

Пример алгебраического выражения:

«Алгебраическое выражение» — понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.

Понятие алгебраического выражения можно дать и несколько иначе — это комбинация чисел, операторов, группировочных символов (скобок)) и/или свободных и связанных переменных, значение которых известно или может быть определено.

4,5(90 оценок)
Ответ:
lena808608
lena808608
01.10.2020
P(x) делится на Q(x), если существует многочлен R(x) такой, что P(x) = Q(x) * R(x).
Если всё так, то по правилам дифференцирования P'(x) =  Q'(x) R(x) + Q(x) R'(x).

Здесь P(x) = x^4 + ax^3 - bx^2 + 3x - 9, Q(x) = (x + 3)^2.

Рассмотрим эти равенства при x = -3. Поскольку Q(-3) = Q'(-3) = 0 и R(x) и R'(x) - полиномы, то P(-3) = P'(-3) = 0.

P(-3) = 81 - 27a - 9b - 9 - 9 = -9(3a + b - 7) = 0
P'(-3) = -108 + 27a + 6b + 3 = 3(9a + 2b - 35) = 0

9a + 2b = 35
3a + b = 7

Умножаем второе уравнение на 2 и вычитаем его из первого:
3a = 21
a = 7

b = 7 - 3a = -14

P(x) = x^4 + 7x^3 + 14x^2 + 3x - 9 = (x + 3)^2 (x^2 + x - 1)
4,4(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ