Решение 1) y =x^3+x-6 y=x^3 Находим производную по формуле степенной функции x∧n = n*x∧(n-1) получаем: 3х∧2 производная от х равна 1 Производная от 6 как от постоянной равна 0 Получаем производную от данной функции: 3х∧2 + 1 2) y= -1/x^3+1/x+1 Вначале преобразуем нашу функцию: у = - х∧(- 3) + х∧(- 1) + 1 Находим производную от ( - х∧(- 3)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: -3х∧(-3+1) =-3х∧(-4) = - 3/х∧4 Находим производную от(х∧(- 1)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: - х∧(-2) = -1/√х Производная от1 как от постоянной равна 0 Получаем производную от данной функции: - 3/х∧4 + -1/√х
(2x^2-3x+1)(2x^2+5x+1)=9x^2посмотрим что (могу и ошибиться,ибо все делаю не так как надо)1.)приравниваем к нулю: (2x^2-3x+1)(2x^2+5x+1)-9x^2=0 2.) раскрываем скобки: 4x^4 +10x^3+2x^2 -6x^3-15x^2-3x+2x^2+5x+1-9x^2=0 4x^4+4x^3-20x^2+2x=-1 3)выносим за скобки 2x: 2x(2x^3+2x^2-10x+1)=-1 2x=-1, x1=-0,5дальше,продолжаем2x^3+2x^2-10x+1=-1,отсюда 2x^3+2x^2-10x=-2,отсюда 2x за скобки снова: 2x(x^2+x-5)=-2, 2x=-2, x2=-1 x^2+x-5=-1,отсюда x^2+x=4, отсюда x за скобки: x(x+1)=4, x3=4, x4=3x1+x2+x3+x4=-0,5+(-1)+4+3=-1,5+7=5,5