1)Решение системы уравнений (-1; 10);
2)Решение системы уравнений (4; -1)
Объяснение:
Решите систему уравнений методом сложения:
1)y-6x=16
4y+6x=34
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:
Складываем уравнения:
у+4у-6х+6х=16+34
5у=50
у=10
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
y-6x=16
-6х=16-у
-6х=16-10
-6х=6
х=6/-6
х= -1
Решение системы уравнений (-1; 10)
2)3x-4y=16
5x+6y=14
В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:
9х-12у=48
10х+12у=28
Складываем уравнения:
9х+10х-12у+12у=48+28
19х=76
х=76/19
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3x-4y=16
-4у=16-3*4
-4у=16-12
-4у=4
у=4/-4
у= -1
Решение системы уравнений (4; -1)
1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1