М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
noer2000
noer2000
12.03.2022 04:04 •  Алгебра

13^1+log13 3 решить это желательно

👇
Ответ:
слышала
слышала
12.03.2022
13^{1+\log_{13}3}=13*13^{\log_{13}3}=13*3=39
4,5(94 оценок)
Открыть все ответы
Ответ:

2cosx\cdot sinx=\sqrt2\cdot cosx

Если уравнение делить на cosx, то надо оговориться, что  cosx\ne 0 , так как на 0 делить нельзя. В силу этого можно потерять корни уравнения, при которых cosx обращается в 0, это  x=\frac{\pi}{2}+\pi n,\; n\in Z . Тогда надо отдельно проверить, не являются ли  x=\frac{\pi}{2}+\pi n,\; n\in Z  корнями заданного уравнения, подставив их в это уравнение.

2cosx\cdot sinx=\sqrt2\cdot cosx\; |:cosx\ne 0\; \to \; x\ne \frac{\pi }{2}+\pi n,\; n\in Z\\\\2sinx=\sqrt2\; \; \to \; \; sinx=\frac{\sqrt2}{2}\; ,\; \; x=(-1)^{n}\cdot \frac{\pi}{4}+\pi k,\; k\in Z\\\\x=\frac{\pi}{2}+\pi n:\; \; 2cos(\frac{\pi}{2}+\pi n)\cdot sin(\frac{\pi}{2}+\pi n)=\sqrt2\cdot cos(\frac{\pi}{2}+\pi n)\; ,\\\\2\cdot 0\cdot (\pm 1)=\sqrt2\cdot 0\; ,\\\\0=0

Так как получили верное равенство, то  x=\frac{\pi}{2}+\pi n  являются корнями заданного уравнения.

P.S.\; \; \; \; sin(\frac{\pi}{2}+\pi n)=\left [ {{sin(\frac{\pi}{2}+2\pi n)=+1\; ,} \atop {sin(\frac{3\pi}{2}+2\pi n)=-1\; .}} \right.

Чтобы не проводить лишнюю проверку , при решении уравнения надо просто вынести общий множитель cosx за скобку, тогда сразу получим две серии решений:

2\, cosx\cdot sinx-\sqrt2\cdot cosx=0\\\\cosx\cdot (2\, sinx-\sqrt2)=0\; \; \Rightarrrow \\\\cosx=0\quad ili\quad \; \; 2\, sinx-\sqrt2=0\\\\x=\frac{\pi }{2}+\pi n\; ,\; n\in Z\quad ili\quad sinx=\frac{\sqrt2}{2}\; ,\; \; x=(-1)^{k}\cdot \frac{\pi}{4}+\pi k\; ,\; k\in Z\\\\Otvet:\; \; x=\frac{\pi }{2}+\pi n\; ,\; \; x=(-1)^{k}\cdot \frac{\pi}{4}+\pi k\; ,\; \; n,k\in Z\; .

4,5(64 оценок)
Ответ:
star1010
star1010
12.03.2022
3-0,2а       При=16                                                                                                                3-0,2*16                                                                                                                1)16*0,2=3,2                                                                                                           2)3-3,2=- 0,2
5-0,3а       При=16                                                                                                                 5-0,3*16                                                                                                                 1)16*0,3=4,8                                                                                                       2)5-4,8=0,2
4,6(35 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ