1)31 (км/час) скорость лодки в стоячей воде.
2)54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
3)44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
Объяснение:
Расстояние между двумя пристанями равно 99,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1,6 ч. лодки встретились. Скорость течения реки равна 3 км/ч.
1)Скорость лодки в стоячей воде?
2)Сколько километров до места встречи пройдёт лодка, плывущая по течению?
3)Сколько километров до места встречи пройдёт лодка, плывущая против течения?
х - скорость лодки в стоячей воде
х+3 - скорость лодки по течению
х-3 - скорость лодки против течения
Формула движения: S=v*t
S - расстояние v - скорость t - время
Согласно условию задачи составляем уравнение:
(х+3)*1,6+(х-3)*1,6=99,2
Разделим уравнение на 1,6 для упрощения:
(х+3)+(х-3)=62
Раскроем скобки:
х+3+х-3=62
2х=62
х=31 (км/час) скорость лодки в стоячей воде.
(31+3)*1,6=54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
(31-3)*1,6=44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
Дано уравнение x^2 - 4x - 6 = √(2x^2 - 8x + 12).
Чтобы не возводить квадратный трёхчлен в квадрат для избавления от корня в правой части, введём замену: x^2 - 4x = а.
Под корнем выражение 2x^2 - 8x равно 2(x^2 - 4х) = 2а.
Получим а - 6 = √(2а + 12). Так проще возвести в квадрат обе части.
а² - 12а + 36 = 2а + 12.
а² - 14а + 24 = 0. Д = 196 - 4*24 = 100.
а1 = (14 - 10)/2 = 2, а2 = (14 + 10)/2 =12.
x^2 - 4x = 2, x^2 - 4x - 2 = 0, Д = 16 + 8 = 24,
х1 = (4 - √24)/2 , х2 = (4 + √24)/2. При проверке - это лишние корни.
x^2 - 4x = 12, x^2 - 4x - 12 = 0, Д = 16 + 48 = 64,
х1 = (4 - 8)/2 = -2 , х2 = (4 + 8)/2 = 6.
ответ: х1 = -2, х2 = 6.
,
Нормальный закон распределения со средним квадратичным отклонением σ означает, что функция плотности вероятности имеет вид:
График функции (1) имеет вид "колокола" симметричного относительно прямой х=0. (В более общем виде тут еще задействовано матожидание (или "среднее значение" х) m (и колокол тогда смещатся), но тогда в смысле ошибок можно было бы говорить о наличии систематической погрешности, а она у нас равна 0. Вот мы и считаем что функция распределения вероятности симметрична относительно 0 ).
С учетом того, что среднее квадратичное отклонение σ=25 функция (1) примет вид:
Функция плотности вероятности f(x) является 1-й производной функции распределения случайной величины x F(x). Т.е:
Что означают такие функции? Что можно найти с их
Например вероятность того, что случайная величина х попадет в диапазон (интервал) (a1; a2) определяется отношением:
При этом функция распределения F(x) задает вероятность попадания случайной величины в интервал (-∞, x).
Итак У нас известна функция распределения вероятности (2) известен задан диапазон в который должна попасть случайная величина (наша погрешность), (-25, 25 ). Чтобы найти вероятность того, что ошибка не вылезет за пределы заданного интервала, все что нам нужно сделать, это взять интеграл вида (4), подставив туда вместо f(x) её выражение (2) и вместо пределов интегрирования поставить границы интервала -25 и 25. Т.е.
И все бы хорошо, НО интеграл вида (5) "неберушка", т.е. его нельзя выразить в элементарных функциях. Исключение составляют интегралы с бесконечными, или "полубесконечными" пределами интегрирования (интеграл Пуассона например). Что нам делать? Как быть? Инегралы такого рода можно посчитать различными численно (приближенно) с любой наперед заданной точностью. Мы этого правда делать не будем. Это уже все проделано до нас и составлено уйма таблиц. Их можно найти и в книжном(бумажном) и в электроном вариантах. Однако есть один момент.Затабулировано целое семейство похожих функций, имеющих к тому же похожие названия, например мне по запросу навскидку попались попадались такие:
1) Функция Лапласа (в другом месте Интеграл вероятности) или даже так:
Функция стандартного нормального распределения
2) Еще один интеграл вероятности:
3) где то вылезла таблица функции
Что с этим делать? Смириться и внимательно смотреть, какая именно функция дана в таблице. При этом исходный интеграл (5) можно свести к табличному интегралу путем замены переменных и вынесения множителя.
Например так:
Подынтегральная функция (четная) ⇒ можно записать:
далее вводим новую переменную
при этом если x=0, то u=0,
x=25, u=σx=σ*25=A
интеграл (9) приобретает вид:
Получили интеграл вида (6) умноженный на 2σ,
ВНИМАНИЕ! ПРЕДЕЛЫ ИНТЕГРИРОВАНИЯ ИЗМЕНИЛИСЬ!
Тот, кто "дружит" с электронными таблицами может поискать в них похожие функции. Это будет удобно, если необходимо выполнить "серию" расчетов, мне например (после некоторых мытарств) удалось в своем Сalc( у меня Libre Office 4.2 ) найти функцию
NORMDIST(X; m; σ; C), которая в зависимости от параметра C выдает
значение либо функции распределения случайной величины (с=1), либо значение плотности вероятности (c=0) в точке X.
Тут
m матожидание случайной величины, у нас оно =0 как мы уже говорили выше.
σ среднеквадратичное отклонение =25.
Таким образом вычиление интеграла (5) обошлось сравнительно "малой кровью"
когда в таблице вычислили выражение:
NORMDIST(25; 0; 25; 1) - NORMDIST(-25; 0; 25; 1)
Итого
ответ P(-25;25)≈0,6827