Если заданное уравнение эллипса разделить на 90, то получим каноническое его уравнение: (х² / 15) + (у² / 6) = 1. Тем самым мы определили вершины эллипса: а = +-√15 в = +-√6. Теперь находим фокусы: с = √(а² - в²) = √(15 - 6) = √9 = +-3. Переходим к гиперболе. Так как у эллипса 4 вершины, а у гиперболы всего 2 фокуса, то возможно 2 варианта расположения ветвей гиперболы в соответствии с заданием: - 1) симметрично оси у, - 2) симметрично оси х. Каноническое уравнение гиперболы: (х² / а²) - (у² / в²) = 1. Параметр а = +-3, с = +-√15 (для 1 варианта). Параметр в = √(с² - а²) = √(15 - 9) = √6. Отсюда получаем один вариант уравнения гиперболы: (х² / 9) - (у² / 6) = 1.
Это у=синх, а синх+2, будет тоже самое, только график переместится по оси у не 2 единицы вверх. свойства Область определения функции — множество R всех действительных чисел.
Множество значений функции — отрезок [1; 3], т. е. синус функция — ограниченная.
Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно точко (0,2).
Функция периодическая с наименьшим положительным периодом 2π:
sin(x+2π·k) +2 = sin x + 2, где k ∈ Z для всех х ∈ R. sin x +2 не равна 0 при x любое
sin x+2 > 0 (положительная) для всех x любое sin x +2< 0 (отрицательная) не бывает отрицательной.
Функция возрастает от 1 до 3 на промежутках: Функция убывает от 1 до 3 на промежутках: Наибольшее значение функции sin x+2 = 3 в точках: х= пи/2+2π·k где k ∈ Z Наименьшее значение функции sin x +2 = 1 в точках: х=3пи/2+2π·k где k ∈ Z
(х² / 15) + (у² / 6) = 1.
Тем самым мы определили вершины эллипса:
а = +-√15
в = +-√6.
Теперь находим фокусы: с = √(а² - в²) = √(15 - 6) = √9 = +-3.
Переходим к гиперболе.
Так как у эллипса 4 вершины, а у гиперболы всего 2 фокуса, то возможно 2 варианта расположения ветвей гиперболы в соответствии с заданием:
- 1) симметрично оси у,
- 2) симметрично оси х.
Каноническое уравнение гиперболы: (х² / а²) - (у² / в²) = 1.
Параметр а = +-3, с = +-√15 (для 1 варианта).
Параметр в = √(с² - а²) = √(15 - 9) = √6.
Отсюда получаем один вариант уравнения гиперболы:
(х² / 9) - (у² / 6) = 1.