М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nike1110
nike1110
26.12.2022 00:24 •  Алгебра

2^х*2^у=16 log3х (три снизу)+log3у (три снизу)=1 решить систему уравнений

👇
Ответ:
asura3
asura3
26.12.2022
2^x*2^y=16         ОДЗ: x>0  y>0     2^(x+y)=2^4    x+y=4      y=4-x
log₃x+log₃y=1                log₃(x*y)=log₃3     x*y=3   x(4-x)=3   x²-4x+3=0  D=4
x₁=3    x₂=1
y₁=1    y₂=3.
4,5(73 оценок)
Ответ:
Allagivorgizova1392
Allagivorgizova1392
26.12.2022
\left \{ {{ 2^{x }* 2^{y} =16 } \atop { log_{3}x+log_{3}y=1 }} \right. \\ \\ \left \{ {{ 2^{x+y}= 2^{4} } \atop {log_{3}(xy)=log_{3}3}} \right. \\ \\ \left \{ {{xy=3} \atop {x+y=4}} \right. \\ \\ \left \{ {{yx=3} \atop {x=4-y}} \right. \\ \\ \left \{ {{y(4-y)=3} \atop {x=4-y}} \right. \\ \\ \left \{ {{x=4-y} \atop {- y^{2}+4y-3=0 }} \right. \\ \\ \left \{ {{ y^{2}-4y+3=0 } \atop {x=4-y}} \right.

1. \left \{ {{y=3} \atop {x=4-3}} \right. \\ \\ \left \{ {{y=3} \atop {x=1}} \right. \\ \\ (1;3)

2. \left \{ {{y=1} \atop {x=4-1}} \right. \\ \\ \left \{ {{y=1} \atop {x=3}} \right. \\ \\ (3;1)

ответ: (3;1);(1;3)
4,8(42 оценок)
Открыть все ответы
Ответ:
Aizere1111
Aizere1111
26.12.2022

Пусть \varepsilon - канонический базис в \mathbb{R}^{3}.

Тогда матрицу перехода T_{e \rightarrow e'} можно найти следующим образом:

T_{e \rightarrow e'} = T_{e \rightarrow \varepsilon} \cdot T_{\varepsilon \rightarrow e'} = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Если записать блочную матрицу \left(\begin{array}{c|c}T_{\varepsilon \rightarrow e}&T_{\varepsilon \rightarrow e'}\end{array}\right) и привести путем элементарных преобразований к виду \left(\begin{array}{c|c}E&X\end{array}\right), то X = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Матрицу T_{\varepsilon \rightarrow e} легко получить: достаточно записать в столбцы координаты векторов базиса e. Аналогично с матрицей T_{\varepsilon \rightarrow e'}.

В итоге необходимо получить вид \left(\begin{array}{c|c}E&X\end{array}\right) следующей матрицы:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\2&2&-1&5&8&1\\3&-3&2&-1&9&2\end{array}\right)

Вычтем первую строку из второй и третьей:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\0&3&-2&0&1&0\\1&-2&1&-6&2&1\end{array}\right)

Вычтем из первой строки 2 третьих и поменяем их местами:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&3&-1&17&3&-1\end{array}\right)

Вычтем из третьей строки вторую:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&0&1&17&2&-1\end{array}\right)

Прибавим ко второй строке 2 третьих и вычтем из первой третью:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&3&0&34&5&-2\\0&0&1&17&2&-1\end{array}\right)

Делим вторую строку на 3:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

Прибавляем в первой строке 2 вторых:

\left(\begin{array}{ccc|ccc}1&0&0&{-\frac{1}{3}}&\frac{10}{3}&\frac{2}{3}\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

\frac{1}{3}\left(\begin{array}{ccc}-1&10&2\\34&5&-2\\51&6&-3\end{array}\right).

4,8(27 оценок)
Ответ:
Annarasumanara2002
Annarasumanara2002
26.12.2022

Событие A₁- " первая деталь имеет дефект"

Противоположное ему событие:

Â₁- " первая деталь не имеет дефекта"

Событие A₂- " вторая  деталь имеет дефект"

Противоположное ему событие:

Â₂- " вторая  деталь не имеет дефекта"

и так далее

до (N+3) cобытия

A(N+3)-" N+3-я деталь имеет дефект"

Â(N+3)-" N+3-я деталь  не  имеет дефекта"

a) A-" ни одна из деталей не имеет дефекта

A=Â₁∩Â₂·∩..∩Â(N+3)

б)В-"по крайней  мере  одна из деталей  имеет дефект"

B=(A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3))∪

∪(A₁∩А₂∩..∩Â(N+3)∪Â₁∩А₂∩А₃∩..∩Â(N+3)∪...∪Â₁∩Â₂...∩А(N+2)∩А(N+3))∪

∪...(A₁∩A₂·∩..∩A(N+3))

в)C-" только одна  из деталей  имеет дефект"

С=A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3)

г) D-"не более двух деталей  имеют дефект

Значит две, одна или ни одной:

D=(A₁∩А₂∩..∩Â(N+3)∪Â₁∩А₂∩А₃∩..∩Â(N+3)∪...∪Â₁∩Â₂...∩А(N+2)∩А(N+3))∪

(Это две1 и 2; 1и 3;  ...  предпоследняя и последняя)

∪(A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3))∪

(Это одна;  1 или вторая 2или ... последняя)

∪(Â₁∩Â₂·∩..∩Â(N+3))

(это событие А - ни одна  из  деталь не имеет дефекта, все без дефекта)

4,4(9 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ