х∈ (-∞, 2]∪[6, +∞).
Объяснение:
Решить неравенство:
x² - 8x + 12 ≥ 0
Приравнять к нулю и решить как квадратное уравнение:
x² - 8x + 12 = 0
D=b²-4ac = 64-48=16 √D=4
х₁=(-b-√D)/2a
х₁=(8-4)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(8+4)/2
х₂=12/2
х₂=6:
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х= 6, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>=0 (как в неравенстве), слева и справа от значений х, то есть, решения неравенства находятся в интервалах
х∈ (-∞, 2]∪[6, +∞).
Неравенство нестрогое, значения х=2 и х=6 входят в решения неравенства, поэтому скобки квадратные.
Скобки при знаках бесконечности всегда круглые.
Пусть х метров в час - производительность одной бригады, тогда (х + 2) метров в час - производительность другой бригады (которая закончила работу на 1 час раньше). Каждая бригада должна проложить по 40 метров кабеля. Уравнение:
40/х - 40/(х+2) = 1
40 · (х + 2) - 40х = 1 · х · (х + 2)
40х + 80 - 40х = х² + 2х
х² + 2х - 80 = 0
D = b² - 4ac = 2² - 4 · 1 · (-80) = 4 + 320 = 324
√D = √324 = 18
х₁ = (-2-18)/(2·1) = (-20)/2 = -10 (не подходит, так как < 0)
х₂ = (-2+18)/(2·1) = 16/2 = 8 м/ч - производительность одной бригады
8 + 2 = 10 м/ч - производительность другой бригады
ответ: 10 м/ч и 8 м/ч.
Проверка:
40 : 10 = 4 ч - время работы одной бригады
40 : 8 = 5 ч - время работы другой бригады
5 ч - 4 ч = 1 ч - разница
1) x^2-19x+18=0
x=1
x=18
2)x^2+17x-18=0
x=1
x=-18