1.
a)y=x/2-2
График прямая линия.
Таблица:
х -4 -3 0 1
у -4 -3,5 -2 -1,5
б)y=|x/2-2|
График две прямые линии, соединяются в точке (4; 0), как "птичка"
Таблица:
х -4 -2 0 2 4 6 8
у 4 3 2 1 0 1 2
в)у=|x|/2-2
График две прямые линии, соединяются в точке (0; -2), как "птичка"
Таблица:
х -6 -4 -2 0 2 4 6
у 1 0 -1 -2 -1 0 1
2.
а)у= -х²+2х+3
График парабола со смещённым центром, ветви направлены вниз.
Таблица:
х -2 -1 0 1 2 3 4
у -5 0 3 4 3 0 -5
у>0 при -1 <= х <=3
б)y=|-x²+2x+3|
График парабола с частью вершины, как бы отсечённой и направленной вверх, получается "выемка", ветви параболы также направлены вверх.
Таблица:
х -3 -2 -1 0 1 2 3 4 5
у 12 5 0 3 4 3 0 5 12
в)у=|-x²+2|x|+3|
График парабола, только уже две "выемки" внизу, ветви параболы направлены вверх.
Таблица:
х -5 -4 -3 -2 -1 0 1 2 3 4 5
у 12 5 0 3 4 3 4 3 0 5 12
4. Задача
х - га в день по норме
х+2 - га фактически
168га - по плану
182га - фактически
168/x - дней по плану
182/(х+2) - дней фактически
Разница в один день, уравнение:
168/x - 182/(х+2) = 1 Избавляемся от дробного выражения, общий знаменатель х(х+2):
168(х+2) - 182х=х²+2х
168х+336-182х-х²-2х=0
-х²-16х+336=0
х²+16х-336=0, квадратное уравнение, ищем корни:
х₁,₂=(-16±√256+1344)/2
х₁,₂=(-16±√1600)/2
х₁,₂=(-16±40)/2
х₁ = -28, отбрасываем, как отрицательный
х₂ = 12 (га) должны были пахать по норме в день
12+2=14 (га) вспахивали фактически
Проверка:
168 : 12 = 14 (дней по плану)
182 : 14 = 13 (дней фактически)
Разница в 1 день, всё верно.
Сделала, что смогла) По первому листочку.
Объяснение:
Пример 1. Пусть А – множество двузначных натуральных чисел, В – множество четных двузначных чисел. Верно ли, что В есть подмножество множества А?
ответ: Каждое четное двузначное число содержится в множестве А. Следовательно, В А.
Пример 2. Пусть А = {1; 2; 3}, В = {x | x N , х < 4}. Верно ли, что А = В.
ответ. Множество В состоит из натуральных чисел, меньших 4. Каждый элемент из А входит в В. Следовательно, А В. Но натуральных чисел, меньших 4, кроме чисел 1,2,3, нет. Следовательно, каждый элемент из В входит в А. Значит, В А. По определению, А = В.
Пример. 3. Дано множество А четных натуральных чисел и множество В натуральных чисел, кратных 4. В каком отношении включения находятся множества А и В? ответ проиллюстрировать диаграммой Эйлера-Венна.
Решение. Каждое натуральное число, кратное 4, является четным числом. Значит, B А. Но не каждое четное число обязано делится на 4. Например, 6 не делится 4, т.е. А В. Имеем диаграмму: