1)
ОДЗ:
⇒
⇒ ![x \in (-\infty; -2] \cup [3;+\infty)](/tpl/images/1361/5355/f678f.png)
⇔
или 
⇒
или
⇒
или
или 
не входит в ОДЗ
два корня
или 
при ![x \in (-\infty; -2] \cup [3;+\infty)](/tpl/images/1361/5355/f678f.png)
, тогда
⇒
⇒ 
C учетом
получаем ответ:

2)
ОДЗ:
⇒
⇒ ![x \in (-\infty; -2] \cup [4;+\infty)](/tpl/images/1361/5355/4ed2b.png)
⇔
или 
⇒
или
⇒
или
или 
не входит в ОДЗ
два корня
или 
при ![x \in (-\infty; -2] \cup [4;+\infty)](/tpl/images/1361/5355/4ed2b.png)
, тогда
⇒
⇒ 
C учетом
получаем ответ:
![(-\infty;-2]\cup \{2\}](/tpl/images/1361/5355/83f26.png)
3)

Так как
при любых х, возводим данное неравенство в квадрат:


D=16-12=4


Показательная функция с основанием 3 возрастает

О т в е т. (0;1)
4)

Так как
при любых х, возводим данное неравенство в квадрат:



D=36-20=16


Показательная функция с основанием 5 возрастает

О т в е т. (0;1)
х² - 3х -40 = 0
Д = 9 - (4х(-40)) = 9+160 = 169
Х1,2 = (3 +/-√169) / 2=( 3+/-13)/2
Х1 = (3+13)/2 = 16/2 = 8
Х2 = (3-13)/2 = -10/2 = -5
ответ: Х1 = 8; Х2 = -5