1) Обозначим:
х - количество га, которое фермер должен был пахать ежедневно.
t - количество дней за которое он вспахал бы это полею
Составляем 1 уравнение:
х * t = 60
2) Но фермер пахал (х + 1) га в день и потратил на это (t - 3) дня. Составляем 2 уравнение:
(х + 1)*(t - 3) = 60
3) Получается система из 2 уравнений с 2 неизвестными:
х * t = 60
(х + 1)*(t - 3) = 60
4) В первом уравнении выражаем х через t и подставляем во второе уравнение:
х = 60/t
[60/t + 1)*(t - 3) = 60
Раскрываем скобки:
60 - 180/t +t - 3 = 60
Умножаем все члены уравнения на t:
60t - 180 + t² - 3t = 60t
t² - 3t + 180 = 0
5) Получается квадратное уравнение. Решаем его. Находим дискриминант:
D = 3² + 4*180 = 729
√D = 27
t₁ = (3 + 27)/2 = 15
t₁ = (3 - 27)/2 = -12 (отрицательное значение не подходит)
Значит, фермер должен был пахать поле 15 дней, а вспахал на 3 дня раньше то есть за (15 - 3) = 12 дней
(в формуле справа в числителе объем, в знаменателе время заполнения)
(x1 + x2) = V/10
(x2 + x3) = V/15
(x1 + x3) = V/24
Сложим выражения
2*(x1 + x2 + x3) = V/10 + V/15 + V/24 = V(5/30 +1/24) = V*(5/24)
x1 + x2 + x3 = V*(5/24)/2 = V*(5/48)
t = 48/5 мин = 9,6 мин
ответ 9.6 мин