Отрезок AB можно рассматривать как гипотенузу. Для этого представим дополнительную точку C с координатами абсциссы от точки А и ординатой точки В, это будет С(4;-2). Длина АС=8-(-2)=10, ВС=4-2=2. По теореме Пифагора AB²=AC²+BC²=10²+2²=104 АВ=√104=√4*26=2√26 Координаты середины АВ-- абсцисса равноудалена от абсцисс точек А и С это будет 3, а ордината по построению видно это тоже 3 Для определения принадлежности точек прямой подставим координаты в уравнение А(4;8)------ x-y+4=0; 4-8+4=0 равенство верное, точка принадлежит В(2;-2)----- 2-(-2)+4=0; 8=0 равенство неверное, точка не принадлежит
Диаметр окружности, описанной вокруг прямоугольного треугольника - это его гипотенуза. Один катет a = 20 см. Проекция второго катета b на гипотенузу c равна b*cos A Длина самой гипотенузы c = a/sin A. И есть еще теорема Пифагора: a^2 + b^2 = c^2 Получается система: b*cos A = 9; отсюда b = 9/cos A c = 20/sinA c^2 = 20^2 + b^2 Подставляем 1 и 2 уравнение в 3 уравнение. 400/sin^2 A = 400 + 81/cos^2 a Умножаем всё на sin^2A и на cos^2 A = 1 - sin^2 A 400(1 - sin^2 A) = 400sin^2A*(1 - sin^2A) + 81*sin^2A Замена sin^2 A = x ∈ [0; 1] 400 - 400x = 400x - 400x^2 + 81x 400x^2 - 881x + 400 = 0 D = 881^2 - 4*400*400 = 776161 - 640000 = 136161 = 369^2 x1 = sin^2 A = (881 + 369)/800 = 1250/800 > 1 - не может быть. x2 = sin^2 A = (881 - 369)/800 = 512/800 = 16/25 sin A = 4/5; cos^2 A = 9/25; cos A = 3/5 b = 9/cos A = 9 : (3/5) = 9*5/3 = 15 c = 20/sin A = 20 : (4/5) = 20*5/4 = 25 ответ: 25.
(16x^2 + 56x + 49) * (2x^2 + 7x + 6) = 34
32x^4 + 112x^3 + 98x^2 + 112x^3 + 392x^2 + 343x + 96x^2 + 336x + 294 = 34
32x^4 + 224x^3 + 586x^2 + 679x + 260 = 0
По теореме Виета для уравнений 4 степени
{ x1 + x2 + x3 + x4 = -b/a = -224/32 = -7
{ x1*x2 + x1*x3 + x1*x4 + x2*x3 + x2*x4 + x3*x4 = c/a = 586/32 = 293/16
{ x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4 = -d/a = -679/32
{ x1*x2*x3*x4 = e/a = 260/32 = 65/8
ответ: -7*4 = -28
Можно решить и более по-школьному
(16x^2 + 56x + 49) * (2x^2 + 7x + 6) = 34
(8(2x^2 + 7x) + 49) * (2x^2 + 7x + 6) = 34
Замена 2x^2 + 7x = y
(8y + 49)*(y + 6) - 34 = 0
8y^2 + 97y + 294 - 34 = 0
8y^2 + 97y + 260 = 0
D = 97^2 - 4*8*260 = 9409 - 8320 = 1089 = 33^2
y1 = (-97 - 33)/16 = -130/16 = -65/8
y2 = (-97 + 33)/16 = -4
Обратная замена
1) 2x^2 + 7x = -65/8
16x^2 + 56x + 65 = 0
D/4 = 28^2 - 16*65 = 784 - 1040 = -256 = (16i)^2 < 0
Действительных решений нет. Комплексные решения
x1 = (-28 - 16i)/16 = -7/4 - i
x2 = (-28 + 16i)/16 = -7/4 + i
2) 2x^2 + 7x = -4
2x^2 + 7x + 4 = 0
D = 7^2 - 4*2*4 = 49 - 32 = 25
x1 = (-7 - 5)/4 = -3
x2 = (-7 + 5)/4 = -1/2
Сумма корней -3 - 1/2 - 7/4 - i - 7/4 + i = -7
ответ: -7*4 = -28
Но если учитывать только действительные решения, то получается
Сумма корней -3 - 1/2 = -3,5
ответ: -3,5*4 = -14