Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение, должно быть конечным.[1]
Пример алгебраического выражения:
«Алгебраическое выражение» — понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.
Понятие алгебраического выражения можно дать и несколько иначе — это комбинация чисел, операторов, группировочных символов (скобок)) и/или свободных и связанных переменных, значение которых известно или может быть определено.
(сosx-sinx)²-(cosx-sinx)=0
(cosx-sinx)(cosx-sinx-1)=0
cosx-sinx=0/cosx≠0
1-tgx=0⇒tgx=1⇒x=π/4+πn
cosx-sinx-1=0
cos²x/2-sin²x/2-2sinx/2cosx/2-sin²x/2-cos²x/2=0
-2sin²x/2-2sinx/2cosx/2=0
-2sinx/2(sinx/2+cosx/2)=0
sinx/2=0⇒x/2=πn⇒x=2πn
sinx/2+cisx/2=0/cosx/2≠0
tgx/2=-1⇒x/2=-π/4+πn⇒x=-π/2+2πn
2)2(cos x- sin x)²- 5 (sin x - sin x)+2=0
2(cosx-sinx)²=-2
(cosx-sinx)²=-1
нет решения