Пусть х первое число, у- второе число, то х+у=80, 0,5х+0,25у=26.По условию задачи составим систему уравнение:
х+у=80 х=80-у х=80-у х=80-у
0,5х+0,25у=26 0,5(80-у)+0,25у=26 40-0,5у+0,25у=26 -0,25у=-14
х=80-у х=80-56 х=24 -первое число
у=56 у=56 у=56 -второе число
проверка:
24+56=80 0,5*24+0,25*56=26
80=80 12+14=26
26=26
ответ: первое число 24, второе 56
опишу в общем виде: составляешь таблицу со строками «туда» и «обратно». Там расстояние (S) будет одинаковое, скорость (v) «туда» обозначим за х, а скорость «обратно» за х+2. Время «t» выражаем через формулы скорости v=S/t, НО! Во времени «обратно» ещё добавляем два отдельно от дроби. Дальше составляем уравнение и домножаем каждую дробь и двойку на х(х+2), то есть приводим к общему знаменателю-единице. Раскрываем скобки, сокращаем, получившее квадратное уравнение -2х^2-4х+448=0 делим на -2 и получаем х^2+2х-224=0. Через дискриминант (равный 900) решаем уравнение, получаем корни 14 и -16. -16 не подходит, потому что скорость не может быть отрицательной. Прибавляем к 14 два (по условию) и получаем 16. Вторую хз как решать
Пусть первоначальное кол-во жидкости таково:
x л - I, у л - II, z л - III.
После переливания из первого во второй получим:
л - осталось в I
л стало во II
После переливания из второго в третий получим:
л - осталось во II
л - стало в III.
Наконец, после переливания из III в I получим:
л - осталось в III
л - стало в I.
По условию, во всех сосудах стало по 9 л жидкости.
Решаем систему уравнений:
Итак, первоначально было:
12 л - в I сосуде, 12 л - во II сосуде, 8 л - в I сосуде, 7 л - в III сосуде.
ответ: 12 л, 8 л, 7 л.