М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vladiev
vladiev
28.07.2022 20:27 •  Алгебра

Решите уравнение f`(x)=0: x+sin2x+cos2x

👇
Ответ:
Лера9814
Лера9814
28.07.2022
f(x)=x+sin2x+cos2x
f'(x)=(x+sin2x+cos2x)'=1+2cos2x-2sin2x=0
(sin^{2}x+cos^{2}x)+(2cos^{2}x-2sin^{2}x)-4sinx*cosx=0
3cos^{2}x-4sinx*cosx-sin^{2}x=0
3-4tgx-tg^{2}x=0
tg^{2}x+4tgx-3=0

Замена: tgx=t

t^{2}+4t-3=0, D=16+4*3=28
t_{1}= \frac{-4- \sqrt{28}}{2}= \frac{-4-2\sqrt{7}}{2}=-2-\sqrt{7}
t_{2}= \frac{-4+ \sqrt{28}}{2}=-2+\sqrt{7}

Вернемся к замене:
1) tgx=-2-\sqrt{7}
x=arctg(-2-\sqrt{7})+ \pi k, k∈Z
x=-arctg(2+\sqrt{7})+ \pi k, k∈Z
2) tgx=-2+\sqrt{7}, k∈Z
x=arctg(\sqrt{7}-2)+ \pi k, k∈Z
4,5(34 оценок)
Открыть все ответы
Ответ:
fgk200
fgk200
28.07.2022

Строим угол C, равный данному углу Е. Для этого

строим луч СН;

проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.;

D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН;

проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L.

Проводим луч CL. Угол LCK равен данному углу Е.

На луче СН откладываем отрезок СА = b.

На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.

Треугольник АВС - искомый.

4,7(15 оценок)
Ответ:
4755Kristina501
4755Kristina501
28.07.2022
Уравнение любой касательной к любому графику находится по формуле:
f'(x_{0})*(x-x_{0})+f(x_{0})
Где f'(x_{0}) производная функции в данной точке. А x_{0} точка касания по иксу.

1)
Поначалу у функции y=x^{0,2} мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
f'(x)=nx^{n-1} - где n это степень.
В нашем случае:
f'(x)=0,2x^{0,2-1}= 0,2x^{-0,8}
Так, нашли производную общего случая.

Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y=0,2x_{0}^{-0,8}*(x-x_{0})+x_{0}^{0,2}

2) 
Опять же, найдем производную 
y=\frac{1}{3}^{(x-2)-1}
f'(x)=(x-3)x^{(x-4)}
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y= (x_{0}-3)x_{0}^{(x_{0}-4)}*(x-x_{0})+(1/3)^{(x_{0}-3)}

То есть, берешь любой икс, и вставляешь в выражение касательной вместо x_{0} и получаешь уравнение касательной.

Это и есть окончательные ответы. 
Если что-то не правильно, то это значит что вы не правильно написали условие.
4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ