Первый и второй насосы наполняют бассейн за 9 минут, второй и третий - за 12 минут, а первый и третий - за 18 минут. за сколько минут эти три насоса заполнят бассейн, работая вместе?
Пусть x-первый насос, y-второй,z-третьи. Тогда работа насосов равна: 1/x+1/y=1/9 1/y+1/z=1/12 1/x+1/z=1/18 Сложив все уравнения, получим, что 2*(1/х+1/у+1/z)=1/9+1/12+1/18=4/36+3/36+2/36=9/36=1/4 Разделив обе части уравнения на 2, получим, что 1/x+1/y+1/z=1/8 Перевернув дробь, придём к выводу, что насосы, работая вместе, заполнят бассейн за 8 минут.
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
1/x+1/y=1/9
1/y+1/z=1/12
1/x+1/z=1/18
Сложив все уравнения, получим, что
2*(1/х+1/у+1/z)=1/9+1/12+1/18=4/36+3/36+2/36=9/36=1/4
Разделив обе части уравнения на 2, получим, что 1/x+1/y+1/z=1/8
Перевернув дробь, придём к выводу, что насосы, работая вместе, заполнят бассейн за 8 минут.