М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aidos0278gmailcom
aidos0278gmailcom
29.04.2021 18:27 •  Алгебра

Каким методом вычисляется данное выражение соs(2arcsin2/7)? подскадите

👇
Ответ:
Cos2a=1-2sin²a
sin(arcsin a)=a;  sin²(arcsin a)=a²
Соs(2arcsin2/7)=1-2sin²(arcsin2/7)=1-2*(2/7)²=1-2*(4/49)=(49/49)-(8/49)=41/49
4,6(82 оценок)
Открыть все ответы
Ответ:
Tictax
Tictax
29.04.2021
∠ABD = ∠ACD = 50°

∠ACB = ∠ADB = x
∠BAC = ∠BDC = y
∠CAD = ∠CBD = z

x:y:z = 5:7:13

∠ABC = ∠ABD + ∠CAD = 50° + z
∠BCD = ∠ACB + ∠ABD = x + 50°
∠CDA = ∠BDC + ∠ADB = y + x
∠DAB = ∠CAD + ∠BAC = z + y

∠ABC + ∠BCD + ∠CDA + ∠BAD =  50 + z + x + 50 + y + x + z + y = 360°

100 + 2z + 2x + 2y = 360
x + z + y = 130
x/y = 5/7
x/z = 5/13
x + 7x/5 + 13x/5 = 130
5x = 130
x = 26
y = 36.4
z = 67.6

∠ABC = 50° + z = 50° + 67.6° = 117.6° 
∠BCD = x + 50° = 26° + 50° = 76°
∠CDA = y + x = 36.4° + 26° = 62.4°
∠DAB = z + y = 67.6° + 36.4° = 104°
4,6(64 оценок)
Ответ:
polinamalina2004
polinamalina2004
29.04.2021

1. -15 ≤ 1-2у ≤ 0

2. 4\leq \frac{4}{y} +y\leq 8\frac{1}{2}

Объяснение:

1. Т.к. в линейном выражении 1-2у перед у стоит знак "-", то при вычислении пределов возможных значений нужно либо поменять направление знаков больше (меньше) либо поменять местами подставляемые значения 1/2 и 8.

для 1/2 ≤ у: 1-2у ≤ 0

для у ≤ 8:  1-2у ≥ -15

Тогда: -15 ≤ 1-2у ≤ 0

2. Здесь перед у знак "+", но появилась нелинейная зависимость 4/у, поэтому нужно вычислить производную функции (4/у + у) и приравнять её к нулю, чтобы найти ее экстремум.

(\frac{4}{y} +y)'=-\frac{4}{y^2} +1\\-\frac{4}{y^2} +1=0\\y^2=4\\y_1=2; y_2=-2.

Но так как значение -2 не попадает в наш промежуток по условию, то это значение отбрасываем.

Значит, в точке у=2 имеем экстремум. Определим  его значение:

для у=2: \frac{4}{y} +y=4.

На остальных участках функция либо возрастает, либо убывает. подставим граничные значения из условия:

для у=1/2 : \frac{4}{y} +y=8\frac{1}{2}

для у=8: \frac{4}{y} +y=8\frac{1}{2}.

Т.е. имеем кривую с максимумами 8\frac{1}{2} и минимумом 4.

Тогда 4\leq \frac{4}{y} +y\leq 8\frac{1}{2}

4,5(62 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ