Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
(х+(3с+2))² - (х-(3с+2))²=40
х²+2х(3с+2)+(3с+2)²-(х²-2х(3с+2)+(3с+2)²)=40
х²+2х(3с+2)+(3с+2)²-х²+2х(3с+2)-(3с+2)²=40
4х(3с+2)=40
х(3с+2)=10
х=10/(3с+2)
уравнение
а) имеет корни при 3с+2≠0; 3с≠-2; с≠-2/3; с∈(-оо; -2/3)∨(-2/3; +оо)
б) не имеет корней при 3с+2=0; 3с=-2; с=-2/3
в) имеет положительные корни при 3с+2>0; 3с>-2; с>-2/3; с∈(-2/3; +оо)
г) имеет отрицательные корни при 3с+2<0; 3с<-2; с<-2/3; с∈(-оо; -2/3)