Судя по условию задачи, машины выехали в одном направлении, и первая, более быстрая машина (ее скорость v₁ = 89 км/ч ) попутно догоняет вторую, медленную машину (ее скорость v₂=56 км/ч) и догонит ее в точке С:
89 км/ч→ 56 км\ч→ АB - - - - - С 99 км
Допустим, машины встретились в точке С. На это им потребовалось одинаковое время t, за которое они разные пути S₁ и S₂: S₁ = AB + BC = 99+BC S₂ = BC С другой стороны S₁= v₁t = 89t S₂ = v₂t = 56t Выразим неизвестное время t из первого и второго уравнений и приравняем полученные выражения (поскольку время одно и то же) : 99+BC = 89t, t = (99+BC) / 89 BC = 56t, t = BC / 56 (99+BC) / 89 = BC / 56 56(99+BC) = 89 BC 5544 + 56 BC = 89 BC 5544 = 33 BC BC = 5544 / 33 = 168 BC = 168 (км) t = BC/56 = 168/56 = 3 (ч)
ответ: на расстоянии 168 км от города B через 3 часа после выезда
Можно решить другим Представим, что вторая машина стоит в городе B. Тогда первая машина движется к ней со скоростью 89-56 = 33 км/ч Расстояние между машинами 99 км. И это расстояние будет пройдено первой машиной за время = путь / скорость = 99/33=3 ч. Зная время, можно перейти к первоначальным условиям задачи (обе машины движутся) и найти расстояние между точками B и C. Это удобнее сделать, исходя из движения второй машины, потому что она двигалась из точки B в точку C. длина BC = скорость второй машины * 3 часа = 56 км/ч * 3 ч = 168 км.
1. Пусть время, за которое скорый поезд догонит пассажирский, - х ч. Пассажирский поезд в пути находится (х+2) ч, т.к. выехал на 2 часа раньше. tск=х ч tпас=(x+2) ч 2. Нам даны скорости поездов, поэтому можем найти S по формуле: S=V*t Sск=66x км Sпас=55(x+2) км 3. Поезда проходят равное расстояние, поэтому справедливо уравнение: 66x=55(x+2) 66x=55x+110 66x-55x=110 11x=110 x=10 Через 10 ч скорый поезд догонит пассажирский. Нашли время, значит можем найти расстояние, которое проедет скоростной поезд за 10 ч: Sск=66*10=660 (км) Для того чтобы найти на каком расстоянии поезда встретились необходимо: S=Sобщ-Sск=855-660=195 (км)
2. Найдем путь, который скорый поезд за 2 ч: 80*2=160 (км) Найдем путь, на котором поезда двигались одновременно: 720-160=560 (км) Скорость сближения поездов: 80+60=140 (км/ч) Время до встречи: 560/140=4 (ч)
3. Найдем время за которое самолеты вместе пролетели все расстояние: 11-8=3 (ч) 1. Мы знаем V1 и t1. Находим S1=620*3=1860 (км) 2. S2=3540-1860=1680 3. Теперь знаем S2 и t2. Находим V2=1680/3=560 (км/ч)
минусовая степень уходит в знаменатель
Получается 27*3/d в 4 степени=81/d в 4
d=3 или -3