4ab+5b²;
при a=1; b=⅕ ответ: 1
Объяснение:
(a + 2b)²- (a - b)(b + a) = a²+ 4ab + 4b² - (a²- b²) = a² + 4ab + 4b² - a² +b²
взаимоуничтожаем a² и -a², приводим подобные члены и получаем: 4ab+5b²
при a=1; b=⅕ 4ab+5b²= 4×1×0,2 + 5×0,2² = 0,8 + 0,2 = 1
В выражении присутствуют формулы квадрат суммы и разность квадратов, раскрываем скобки, с учётом знаков перед скобкой, в данном случае "-", следовательно, все знаки внутри скобок меняем на противоположные. Потом взаимоуничтожаем a² и -a², приводим подобные члены и получаем 4ab+5b². Далее находим значение выражения 4ab+5b², при установленных значениях, для этого подставляем числа в полученное выражение и решаем.
Любое выражение в квадрате принимает наименьшее значение 0. Сумма квадратов тоже принимает наименьшее значение 0.
Следовательно, наименьшее значение выражения 0. Чтобы выражение было равно 0, нужно, чтобы либо первое слагаемое было х, а второе -х; либо первое слагаемое -х, а второе х; либо оба слагаемых должны быть равны 0. Так как здесь сумма квадратов, то ни одно из слагаемых отрицательным быть не может => Оба слагаемых равны 0.
5х+4у+6=0 3х+4у+2=0
Выражаем 4у из обоих уравнений:
4у=-6-5х 4у=-2-3х
Приравниваем -6-5х=-2-3х
-2х=4
х=-2
Подставляем х в одно из уравнений:
4у=-2-3*(-2)
4у=4
у=1
Оценка: 5 Голосов: 4 09.12.2012
2)