1.
Нужно возвести аргумент "х", в квадрат.
Например по х возьмём первый аргумент:
0, возводим в квадрат 0²=0, записываем в таблицу.
Возьмём третий аргумент: "-1" возводим в квадрат: (-1)²=1
Четная степень для отрицательного выражения убирает знак, т.к не может быть такого, что число умноженное на себя четное количество раз получилось отрицательное. Слышали такое: Минус на минус даёт плюс?? так вот: минус на минус на минус и ещё на минус тоже даёт плюс т.е четное количество раз.x | 0 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 5 | -5 | 6 | -6
——————————————————————————>х
y | 0 | 1 | 1 | 4 | 4 | 9 | 9 | 16 | 16 | 25 | 25 | 36 | 36
2.
Нужно возвести аргумент "х", в куб.
Например по х возьмём первый аргумент:
0, возводим в куб 0³=0, записываем в таблицу.
Возьмём пятый аргумент: "-2" возводим в куб: (-2)³=-2×(-2)×(-2)=-8.
Отрицательные числа в нечетной степени, так и остаются отрицательными.x | 0 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 5 | -5
——————————————————————————
y | 0 | 1 | -1 | 8 | -8 | 27 | -27 | 64 | -64 | 125 | -125
Продолжение:
| 6 | -6
——————>х
| 216 | -216
Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).
Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.
Перед тем, как перейти к алгоритму симплекс метода, несколько определений.
Всякое неотрицательное решение системы ограничений называется допустимым решением.
Пусть имеется система m ограничений с n переменными (m < n).
Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных) переменных и n - m неосновных. (небазисных, или свободных) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.
Любые m переменных системы m линейных уравнений с n переменными называются основными, если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).
Алгоритм симплекс метода
Шаг 1. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").
Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.
Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.
Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.
Важные условия
Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение - не единственное.
Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным - в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение записывают в виде .
На сайте есть Онлайн калькулятор решения задач линейного программирования симплекс-методом.
y - плановое количество дней.
сделали (x+4)*(y-1)=360;
по плану x*y=360;
x=360/y;
(360/y +4)*(y-1)=360;
360-360/y +4y-4=360;
4y-360/y-4=0;
4y^2-4y-360=0;
y^2-y-90=0;
D= 1+360=361;
y1=(1+19)/2=10;
y2=(1-19)/2=-9; (не подходит по смыслу значения)
x=360/9;
x=40 деталей в день по плану.