В решении.
Объяснение:
у = 32/(2 - х)² - (2 + х)²
Область определения - это значения х, при которых функция существует, обозначение D(f) или D(y).
Данная функция существует, если её знаменатель больше нуля (известно, что на ноль делить нельзя, и дробь в этом случае не имеет смысла).
Поэтому вычислить область определения через неравенство:
(2 - х)² - (2 + х)² > 0
Раскрыть скобки:
4 - 4х + х² - (4 + 4х + х²) > 0
4 - 4х + х² - 4 - 4х - х² > 0
-8х > 0
8х < 0
x < 0.
Решение неравенства х∈(-∞; 0).
Область определения функции D(y) = (-∞; 0).
То есть, функция существует при всех значениях х от - бесконечности до х = 0.
Объяснение:
1 . 5) ( x + 1 )/(x²- xy ) i ( y - 1 )/(xy - y²) ;
y*(x + 1 )/xy(x - y ) i x*(y - 1)/xy(x - y ) ;
6) 6a/(a - 2b) i 3a/( a + b ) ;
6a( a + b )/(a + b)(a - 2b ) i 3a(a - 2b)/(a + b)(a - 2b ) ;
7) ( 1 + c²)/( c² - 16 ) i c/( 4 - c ) ;
( 1 + c²)/( c² - 16 ) i - c(c + 4 )/( c² - 16 ) ;
8) ( 2m + 9 )/(m² + 5m + 25 ) i m/(m - 5 ) ;
(2m + 9 )(m - 5)/(m - 5)(m²+5m +25 ) i m( m²+5m +25 )/(m - 5)(m²+5m +25 ).
Тогда . Значит m делится на 3, т.е. , где . Подставляя в выражение , будем иметь:
. Значит и n делится на 3. Но тогда дробь можно сократить на 3, что невозможно по предположению - есть несократимая дробь. Полученное противоречие означает, что - иррациональное число, что и требовалось доказать.