Данное задание решается по формуле sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
Функция
1) Очень дико видеть "область определения", потому что это то, что задаёт математик. Область существования вещественных прообразов называть "область определения" — дичь! Так вот, область существования аргумента здесь — всё множество действительных чисел ("вся числовая прямая").
2) Пересечение с осью аргументов означает равенство . То есть требуется решить уравнение . Это алгебраическое уравнение второго порядка. Два его корня суть 6 и -2.
3) Чётность/нечётность относительно оси значений (x = 0)? Нет, не обладает свойствами ни чётности, ни нечётности.
4) Тут меня раза три остановили, когда я стал исследовать на экстремумы через производную. Если исследовать всё-таки через производные, то
Точки экстремума: 0[/tex]
Вторая производная: => выпуклость вверх для любого значения агрумента (прообраза) => точки экстремума — максимумы.
Функция монотонно возрастает при x < 1 и монотонно убывает при x > 1.
5) Точки экстремумов были найдены выше.
6) Рисунок 1 в аттаче.
7) Они хотят интеграл? Ого. Не, это только завтра.
ответ: sin 58° > cos 58°, sin 18° < cos 18°, cos 80° < sin 70°
Объяснение:
1) Если а є [0°; 90°], то функция sin a возрастает, а cos a - убывает. Значит, с увеличением аргумента а синус на этом отрезке все больше, а косинус -все меньше. Если 45° < а° < 90, то значение косинуса все больше стремится к нулю, а синуса - к единице. Поэтому в этом случае sin a > cos a, т.е. sin 58° > cos 58°.
2) Если 0° < а < 45°, то значение синуса стремится от 0 к √2/2, а косинуса - от 1 к √2/2. Поскольку 0 < 1, то на этом промежутке sin a < cos a, т.е. sin 18° < cos 18°.
3) аналогично п.1.
sinx*(3-4sin^2x)-sin x